London

This year, instead of binge-eating and wrapping a load of stuff, then unwrapping it, we decided to go to London on a Christmas trip. I have loved all the times I’ve traveled around Christmas/New Year (Paris, Chicago, New York, and New Delhi) and London was certainly no exception.

It seems that every time I hear or read an interesting story involving plants, Kew Gardens plays a role (for example, a recent radio story about conservation of a native fern on Ascension Island). So I made it a point to go there, although we clearly saw just a very small fraction of the place.

This is a bit of what we saw in the daytime:

Shapes of the Princess of Wales Conservatory.
Meat eating plant, as big as an adult’s hand. If I had wings, I’d fly in there.
The very edge of a leaf of the Victoria waterlilly. I’ve always had a soft spot for this huge plant.

So lots of amazing plants, but I didn’t see any dye plants. The closest was henna, and although it does dye wool (and hair), I don’t really consider it a dye plant.

Henna, Lawsonia inermis

Save

Museum shops are always a temptation, and I almost bought “50 Plants that Changed the Course of History” by Bill Laws when it struck me that it does not contain any dye plants. Back on the shelf it went. I may be willing to accept that madder doesn’t make top 50, but surely indigo should?

We returned in the evening for “Christmas at Kew”, a lit path through the garden. It was cold and crowded, but beautiful:

The light tunnel continuously changed color, and people were glued to the spot.
The Hive, an installation by the artist Wolfgang Buttress, seen from the outside with illuminated trees.
Inside The Hive

We obviously didn’t go all the way to London without visiting Loop. I looked for naturally dyed yarns to see if they were immensely more delicious than the yarn I dye myself – and found three delicious yarns, but I’m happy to say that the yarn I dye is just as yummy. The first one is Shilashdair Luxury DK, which has quite intense colors, some of them quite vigorously variegated.

The second one is Linen Lace by Artisan Yarns. Beautiful muted colors and shiny texture. I seem to have thought just that also last time I visited Loop, because I actually have such a skein in my stash that I haven’t knit with yet.

The third is Plant Dyed by Mehlsen. I have never come across this yarn before, although it seems to be made not far from where I live in Mainland Denmark. Remarkably, they the colors are really similar to the ones I dye! So they really spoke to me, and I was really tempted to buy some of this yarn, but an internal voice of reason talked me out of it.

In the end, I walked out of Loop with “Estonian Knitting 1, Traditions and Techniques” by Pink, Reimann, and Joeste, a big, excellent, clearly edited and well written book. Lots of interesting information and old photos, and lots of techniques.

Naturally dyed yarns at Loop: Shilashdair (left), Artisan Yarns (middle), and Plant Dyed by Mehlsen (right). Photos taken with the cell phone in artificial lighting, so yarn really looks much better

The Victoria and Albert Museum (V&A) was the last big highlight of the trip. This giant chandelier by Chihuly hangs in the entrance hall, it’s hard to say if it’s ugly or wonderful, but it’s certainly impressive. I find his work always is impressive. It’s also oddly at ease in the natural world – I remember seeing his work at the Botanical Garden in Chicago, and the Aquarium in Monterey, California. In both cases, the glass mimicked the living things that surrounded it.

The Chihuly chandelier at V&A.

The V&A had this amazing knitted baby’s gown, which had been displayed at the 1851 World Exhibition in London. It’s hard to really see in photos, but the knitting is so, so tiny. Tiny! The museum text tells us only that “Miss Sarah Ann Cunliffe of Saffron Walden, Essex, knitted this dress” and that “It was made with 1 1/2 million stitches and approximately 5,770 metres of sewing cotton”. We aren’t told which needle size was used, but I would think 1 mm or maybe smaller.

This picture was taken in low light and without flash, and does not do the 1851 baby gown justice.

There is also many wonderful tapestries at the V&A, and since they are made long before 1856, we can be sure that all the dyes are natural. These tapestries are clearly worth studying for those worried that natural dyes won’t last.

Here are a couple of details from a Belgian tapestry from 1718-24 titled “The March”. Some of the yellows have paled (as expected) which leads to a blueing out of greens produced by yellow with indigo blue overdye, but not disturbingly so. I’d call a color that looks like this after 300 years light-fast.

Blueing out of greens in a 300-year old tapestry

The only bad thing about our trip was that my potted Japanese indigo plant died while we were away. I uprooted this plant when I harvested the last of my plants in late October and it has been growing and flowering inside ever since. I cut it down, and looked inside the dead flowers. It looks like seeds, and it will be interesting to see if they will germinate.

Vindauga Baby

The design theme from my Vindauga Blanket just stayed in my brain after I knit the first one, demanding to be knit in more variations! And when that design theme met with my experiments in 2-dimensional gradients (or matrices), the result was the Vindauga Baby Blanket, which I’ve finally managed to publish the pattern for.

You can buy the Vindauga Baby Blanket pattern on Ravelry. I’ve also dyed a small number of kits, you can find them at my Etsy shop. The colorways are purple-blue (dyed with cochineal and indigo – sold out), red-blue (dyed with madder and indigo) and green-blue (dyed with weld, mugwort, and indigo).

From a set of 9 skeins of matrix-dyed yarn (on the left) to the Vindauga baby blanket.

I’ve now written the pattern, had it test knit, and corrected over and over again. It’s finished, and now published in Danish and English. I’ll be the first to admit that actually finishing a pattern is not my favorite part of the process from idea to pattern. But if I don’t pull myself together at some point, then my ideas end up as just that – ideas in my head.

But dyeing the matrix mini skeins is a lot of fun. I’ve worked with these 2-dimensional gradients for some time now, but it’s still difficult to get them just exactly right!

First, I dye gradients of red, pink, or red with madder, cochineal, weld, tansy, or mugwort. I make 3 skeins of each. Then, I overdye with an indigo gradient, giving each of the 3 identical skeins a different indigo overdye. This may not sound difficult, but both steps are hard to control.

When dyeing with cochineal and madder, I find that the first bath always gives a more intense color than the second one. But sometimes, the second and third give about the same. It’s also difficult to control the exact shade of blue with indigo dyeing. One factor is how long you dip skeins in indigo, another factor is the number of dips. But the amount of available indigo in the vat also changes over time. Even after making many sets of matrix dyed skeins, it’s still a challenge!

indigo overdye
Yellow, red, and white skeins soaking on the left. On the right, similar skeins in an indigo bath. The temperature is 52 degrees, pH is 9-10. Everything is under control!

See projects on Ravelry:

Amazing Dyeing Failures 2

The topic of my last post was failures in dyeing, and here’s more. First, my most serious and most annoying failure as a natural dyer.

3: Organic Indigo Failure

A while back, I experimented a bit with an indigo vat with fructose, but my results were not very convincing, in the sense that the amount of blue I got out of the vat was completely underwhelming given the amount of indigo that went in. Mona of Thread Gently on the Earth suggested trying another type of indigo vat that uses madder and bran. So, using what Mona wrote and what her source of the information, Aurora Silk wrote, I tried the madder/bran vat, since I’m still very interested in a natural fermentation vat for indigo.

In the beginning of May, I mixed 34 g of indigo, 17 g of ground madder, 17 g of wheat bran, and 116 g of sodium carbonate. I used at pot with a well-fitting lid, and filled with water so there wasn’t much air in the pot. We had a very warm early summer this year, so I just put the pot outside the house, where it was 27C during the day. But nothing happened. I had suspected that, since the pot would cool off during the night.

My next setup consisted of a simple electric hot plate for cooking. After a bit of experimentation, i figured out that on the lowest setting, and switching it on for 15 minutes out of every 2 hours with an electric timer plug, I could keep the vat around 37C. After a couple of weeks, though, I was forced to admit that nothing much was going on there.

So I started a bit of wild experimentation. Could it be lack of reducing power? I added fructose and more base, but that didn’t get the vat started. I then transferred part of the vat to a large jar, and tried warming it on a water bath. The jar was full and had a tightly closed lid, and that did improve things. The color didn’t shift to yellow-green, it was still blue with just the slightest green tinge (you can see it on the spoon, top left image above), but the jar vat developed the coppery film of a working indigo jar. I dyed small skeins, and they came out a lovely dusty blue.

indigo
Indigo dyeing with a madder/bran vat with a sprinkle of fructose along the way. The vat became slightly green-tinged (top left), but did develop the coppery film that shows it’s working (top right). Bottom, a small skein of yarn dyed dusty blue in the indigo jar.

So it’s sort of working – but not amazingly so. I can only dye very small skeins in this jar, but I did a lot of troubleshooting which may bring me closer to running a fermentation vat properly and over a long time. For now, I do consider it a failure, since I got so little blue out of my 34 g of indigo, but I’m clearly not done with this. Maybe one needs to set up a larger vat, using an amount of indigo that makes abandoning the vat unthinkable.

4: Common Broom Failure

I have tried – and failed – to grow dyer’s greenweed (Genista tinctoria) a couple of times. The seeds need cold stratification, which I have tried to give them, but they never sprouted. Dyer’s greenweed is supposed to grow wild in my part of Denmark, and I have searched for it, but not found it.  Then in June, the landscape was dotted with yellow: it was common (or Scotch) broom (Cytisus scoparius). This plant is considered invasive in many places, but not in Denmark, where it occurs naturally. But it has been spreading in a new way for the past 30 years, so picking it is definitely fine, just keep in mind that the seeds are poisonous.

I studied my old flora a bit, and since both dyer’s greenweed and common broom belong to the legumes (family Fabaceae), I convinced myself that common broom would be worth a try in the dye pot. At that time (June), the flowers were already past their prime, but i picked some branches at the roadside.

Common broom is spreading, adding splashes of yellow to the roadside.

The result was not impressive – good old failure beige once again:

Wool dyed with common broom – hello beige…

I would have called it a failure and left it at that if I hadn’t come across an entry on common broom in John & Margaret Cannon’s excellent book “Dye Plants and Dyeing” (I recently bought a second hand copy). This book tells you that the part of the plant used for dyeing is young branches, picked in April or early May, not the flowering stalks picked in June as I did. The young branches should produce shades of yellow-green with alum and green with copper. I might try this again next year.

“Dye Plants and Dyeing” also mentions some confusion in the dye literature between common broom and dyer’s greenweed, since the latter is sometimes referred to as dyer’s broom. Not surprisingly, Cannon & Cannon (in a book published in association with The Royal Botanic Gardens, Kew) recommend that the dyer relies on scientific nomenclature for dye plants. Actually the same conclusion is reached by Catharine Ellis in her run-in with “broom”.

5: Reindeer Lichen Failure

During my summer holiday, I gathered some lichen of the Cladonia family, I believe it’s reindeer lichen (Cladonia portentosa). In “Lichen Dyes: The New Source Book”, Casselman lists this lichen as a boiling water method lichen that should give a “leaf green” color. So into the dye pot it went, with a test skein of unmordanted wool, since lichen dyes are substantive. The result is not what I hoped. Beige, despite the fact that I used a large amount of lichen relative to yarn:

lichen
Reindeer lichen (Cladonia portentosa) and yarn dyed with the lichen.

6: Cold Dyeing Failure

mommywitch
Mommy is a witch. Check out my cauldron, a dye pot with mushrooms and wool.

At some point, I tried dyeing with old polypores, in the usual hot dyeing process, and that actually gave me a good yellowish brown. Recently, when cleaning up outside, a big hoard of old polypores surfaced. I don’t have enough space to store dyestuffs inside, so they were outside and were damp and looked like they would spoil.

I had a thousand other projects going, so I wasn’t really ready to dye with them – so I decided to try a very lazy experiment: cold dyeing (which I normally never do because it seems to me that it doesn’t really work). The experiment amounted to throwing the polypores into a bucket with rainwater that was just standing there, then put in a small, 12 g test skein of alum mordanted wool, and then letting it stand there for about 3 weeks. You have probably already guessed that it produced a smelly skein of beige wool, which I cannot even find now (I think I overdyed it with indigo). So all I have to show for this experiment is my 6-year old Dagmar’s drawing showing that “Mommy is a witch”. I am taking it as a compliment.

PS: Just as I wrote this, light samples of both the cold dye and hot dye with old polypores surfaced on my desk. None of them have the light-fastness achieved with fresh polypores in a hot dye bath.

Shibori ♥ Indigo

A while ago, I tried the classical combination of indigo and the Japanese technique shibori, for the first – and definitely not last – time. I dyed a handful of cotton t-shirts and shirts from local second-hand shops.

Traditionally, arashi shibori was made by tying fabric around a wooden pole. The patterns thus achieved are reminiscent of waves of a rough sea – “arashi” means storm.

I made my arashi shibori by wrapping the t-shirt around a piece of pvc pipe, folding the t-shirt vertically (1 and 2 below) before wrapping it. Then, I tied cotton string tightly and bundled the fabric towards the centre (3). It should fold as much as possibe, that’s what produces the pattern (4).

arashi_shibori
T-shirt (1) folded (2) tied (3) and done (4).

The direction that the pattern takes obviously comes from the direction of folding before wrapping. Next time, I’ll try diagonal folds. But all in all, the arashi pattern turned out great, here’s a closer look.

arashi-detail
Detail of neatly folded t-shirt.

And a detail from a shirt where I didn’t fold the fabric neatly before wrapping – that actually makes the pattern more interesting.

skjorte_arashi4
Detail of randomly bundled shirt.

Itajime shibori is made by folding and clamping fabric. I tried the very simplest verision, clamping a quadratically folded t-shirt (1 and 2 below) between a couple of wood blocks using rubber bands (3).

itajime_shibori
T-shirt (1) folded (2) clamped (3) and done (4).

This fold gives a pattern that I find simple and attractive (4). And look at the wood blocks after an indigo bath. Maybe my next experiments will be dyeing wood using indigo.

traeblok
The wood for clamping also took indigo blue nicely.

There’s a lot more to try with itajime shibori: other folds, clamping with other shapes instead of simple wood blocks. And there are many other types of shibori: kumo shibori and yanagi shibori to begin with. Many more experiments!

Late Summer Greens

This summer, I’ve dyed a nice pile of green wool using reed flowers and velvet pax – two dyestuffs that are a highlight of the dyer’s year. Reed flowers because they give such an electric green. You have to admit it’s a bit strange that these red flowers dye wool a wild green, but only if you get them into the dye pot absolutely fresh. If the flowers have opened or are not freshly picked, they will only give yellow. Velvet pax because its dusty greens are so lightfast. The two skeins in the back are dyed with velvet pax, the three in the front with reed flowers.

grøn green
Greens from reed flowers and velvet pax, the essence of late summer dyeing.

I’m becoming better at finding velvet pax. The first couple of years, I looked for it too late in the season. This year, I’ve found it growing several places, for example this archetypical plantation, where Dagmar is picking a big one. Just the kind of place that velvet pax likes to grow.

Dagmarplukker
Dagmar picking velvet pax (with the arm that’s not broken).

Velvet pax can be found in August, and this year, everything was early, so it was there at the beginning of August. And the mushrooms were huge – I found some that were 25 cm across.

sortfiltet
Characteristic brown tops of velvet pax, captured in a typical habitat.

Big, fat spiders are another joy of late summer. This one, which is possibly the fattest spider I’ve ever seen, lives outside our house. When I was sticking my camera right in its face, the neighbor’s big dogs started barking. Immediately, the spider lifted its front legs as if to attack. I chose to run away, so I only got a good shot from underneath the spider, where its pattern looks a bit like eyes. I think it’s a very light colored cross spider, since its body is pointy at the back. After reading that they can bite if provoked, I think my decision to flee was not a bad one.

edderkop
My pet spider.

Summer is also the time of year to test light-fastness. I tested a handful of colors on the windowsill from early July to mid August, and their light-fastness was quite different.

  1. Old polypores, the two top ones warm baths and the lower one a cold bath that brewed outside for some weeks. None of these yellow browns are very light-fast.
  2. Velvet pax, the color didn’t change. I’ve seen this light-fastness in previous test, so it really is that good!
  3. Orange Cortinarius mushrooms, I don’t know which species. Not that light-fast
  4. A matrix of madder and indigo, showing that saturated colors are much more light-fast than pastels
  5. Sorrel root, not very light-fast
  6. Birch leaves. Surprisingly light-fast
  7. Weld. Surprised by the fact that it’s less light-fast than number 6…
  8. Henna on alpaca. I’d say this is a medium light-fastness
  9. Calendula flowers. Surprisingly light-fast
Light testing summer 2016.

I’ve also dyed with tansy, which doesn’t give green, but “just” yellow on alum mordanted wool (no pictures of that). But when I admired the flowers, I suddenly wanted to check if they really do stick to Fibonacci numbers.

The Fibonacci series begins with two ones, and then the next numbers are found by adding the two previous ones:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.

The last time I thought about Fibonacci numbers were for calculating the numbers of my Vindauga blanket where rectangles obey the golden ratio, approximated by the ratio between neighboring numbers in the Fibonacci series, eg. 55/34 = 1.61.

Below is a close-up of a tansy flower. And as promised, the numbers of rows of tiny buds are Fibonacci numbers – 13 clockwise rows and 21 counter-clockwise.

DSC_2985
Tansy flower obeying Fibonacci’s sequence.

Summer Rain

This summer passed in a big cloud of rain, which has been lovely for plants and mushrooms that came out early and in huge numbers. We went on lots of day trips, for example Skovsnogen Artspace:

skovsnogen
Skovsnogen artspace, a forest full of sculptures.

My mom has managed to finish a couple of knitting projects with yarn that I’ve dyed. An Elizabeth shawl designed by Dee O’Keefe in Einband that I’ve dyed with madder. This Icelandic wool is wonderful to knit with and to wear, but it also takes color beautifully. She also knit a pair of socks, the pattern is Laurel by Wendy D. Johnson, the yarn a sock yarn I’ve dyed purplish blue with indigo and a twist of cochineal.

wendyknitting
My Mom’s knitting successes, using yarn that I dyed with madder and indigo.

We went on a day trip to the hilly landscape at Rebild. The sheep are a perfect match for this landscape, and in the end, it is their grazing that maintains the heath (blueberries though, they don’t touch). I don’t remember ever seeing such steep hills anywhere else in Denmark – it tells you about the power of the melting waters from the end of the last ice age.

rebild_bakker
The hills of Rebild.

Rold forest is close by. There, we saw the unusual old beech trees, called “purker” in Danish. They have multiple contorted growths because they were cut down repeatedly for firewood. Fallen logs are left to rot, giving mushrooms and insects a much needed habitat.

roldskov
The ancient forest of Rold.

We also encountered biodiversity on the island of Livø. We went on a guided tour of the organic test farm, where experiments are made with growth practices for organic farming, as well as testing new crops such as quinoa and buckwheat.

It’s always a good thing to see a field of crops with lots of other plants in it, such as clover and cornflower. I’ve always loved cornflowers, but I do see them in a new light after reading about their color in “Handbook of Natural Colorants” by Berchtold & Mussak. The color comes from a supramolecular, self-assembled, complex of cyanidins, flavones, and metal ions (Mg2+ and Fe3+), and that’s why it cannot be extracted for dyeing. The complex comes apart, and the individual parts are not blue. This could be the case with other pretty colors that are impossible to extract? The amethyst deceiver failure comes to mind.

livø
On the island of Livø, off the coast of mainland Denmark.

I obviously couldn’t walk outside an entire summer without looking for lichens. I’ve added two books to my lichen library, one is a small and useful Danish pamphlet, “Laver i Tisvilde Hegn” by Hørnell, Jeppesen & Søchting. The other is the elaborate, somewhat academic “Lichens, An Illustrated Guide to the British and Irish Species” by Dobson.

I always find the most common lichens: Evernia prunastri, Ramalina fastigiataXanthoria parietina, and Hypogymnia physodes which I’ve already experimented with for for dyeing. So this summer, I’ve looked for Cladonia species.

I’ve often seen the funnel shaped lichen (top left in the image below) on the ground and on dead trees, and I believe it’s Cladonia fimbriata. I haven’t collected this lichen, since I’m not sure how to. One funnel at a time? Also, Casselman’s “Lichen Dyes, The New Source Book” does not mention this species.

Then there’s the reindeer lichens. Until recently, I thought they were mosses, but it’s never too late to learn something new. I found Cladonia portentosa (top right) in several places this summer, and my books do say that it is common, so I’ve collected a bit for dyeing.

I’ve only seen the bottom row lichens once each this summer, so I only took photos. Never pick a lichen if you don’t know if it’s rare. On the left, I believe, Cladonia rangiferina, and on the right, Cladonia coniocraea. Casselman does mention Cladonia rangiferina as a bwm (boiling water method) lichen that dyes shades of red to brown. Maybe it’s more common in other parts of the world.

cladonia
Different Cladonia lichens.

Home again, I’m beginning to prepare for the workshop on natural dyeing that I will teach the first weekend of October.

Hados for Everyone

We recently had a heatwave here in Denmark, so the need arose for a project where you don’t have a huge pile of wool on your lap. I ended up knitting Hado by Olga Buraya-Kefelian, and it was so much fun that I knit three of them. The upper one in yellow/green is wool dyed with reed flowers and velvet pax. On the lower left, one with two tones of blue from woad and ordinary tropical (bought) indigo. In the hat on the lower right, woad is accompanied by orange wool, dyed with orange mushrooms of the Cortinarius family.

hado4
If you knit enough of these hats and put them next to each other, they will look like candy.

The picture below shows the different length of the hats. The blue/orange one has 1.5 pattern repeats, the blue/blue one 2, and the yellow/green one 2.5 repeats. But the picture also shows something else, very visibly. All the hats are knit with the same white background, so you can easily tell that the orange color came off.

Last year, when my daughter found these orange mushrooms for me, I was just excited about the huge amount of dye in them. But that color turns out not to be wash fast. So I’m calling this one a failure, although I admit that I would pick these mushrooms again if I found the, so I could experiment some more.

hado_bunke
My hats have different sizes. Try not to notice how the orange mushroom color bled only the white!

The top of the hat as knit in the pattern disturbed my eye, so I had to modify it. I kept knitting the pattern to the top, but omitting the yo’s.

hado2
I modified the crown to visually fit with the main pattern.

Saxon Blue

Ever since I first read about Saxon blue, produced by reaction indigo with concentrated sulfuric acid, I’ve really wanted to try it.

The lawyer Johann Christian Barth is credited with inventing the Saxon blue reaction in 1743. He treated natural indigo with sulfuric acid, then known as “oil of vitriol”. According to de Keijzer, the dye was in use in England by 1748, and Jenny Balfour-Paul writes in her book “Indigo” that the dye “can be seen in some oriental carpets, most characteristically those made in Turkey during the second half of the nineteenth century, and also in late eighteenth century Kashmir shawls”. The dye was relatively popular, even though its light- and wash-fastness is not as good as that of indigo itself.

Balfour-Paul calls the color “bright turquoisy blue” while de Kaizer mentions “bluish-green” shades.

The story about this caught my interest because it seems to be a midway point between truly natural dyes, and the synthetic dyes that came after Perkin’s discovery of mauveine in 1856. If made from natural indigo, Saxon blue is not really a synthetic dye. But it’s not fully natural, either, and the process that it was used in clearly seems to fit better into what we think of as an industrial process.

The problem for trying this at home is that you need to use concentrated sulfuric acid in order to produce Saxon blue. This is not something you can just go out and buy, and there’s a good reason for that. It’s a quite dangerous acid that reacts with carbohydrates like bread in a way that makes it look like the bread is on fire.

But now, the perfect opportunity came up, the exam project for teaching chemistry that  I’m working on right now. So here’s my little experiment with Saxon blue. I tried this in a chemistry lab, inside a fume hood, wearing lab coat and safety goggles. DO NOT TRY THIS AT HOME!!

I mixed 0.5 g of indigo powder with 5 mL of concentrated sulfuric acid, and then heated it over a simmering water bath for about 10 minutes (left photo below).

Then I diluted the indigo into water, and put in alum mordanted wool. I heated the wool in the dye bath for about 40 minutes (right photo below). Even after diluting, the solution was very acidic (pH 1).

saxonblue_lab
Dyeing in the chemistry lab.

This is how the skein of wool turned out after rinsing out the excess color (there was a lot). A very clear blue, that’s actually very similar to the shade of blue you would get with indigo used as a vat dye.

saxonbluewool
Saxon blue wool.

But the chemistry behind this blue is different from the usual indigo chemistry. The reaction between indigo and sulfuric acid produces a compound called indigo carmine (this is what is called Saxon blue). Indigo carmine is an acid dye, not a vat dye. That means that it will bond to aluminum that was attached to the wool during alum mordanting.

Notice the cotton thread tied around my Saxon blue wool skein below. It’s only slightly blue-tinged. Alum does not react well with cotton, so there were only very few sites on that thread where indigo carmine could bond.

Now compare with the blue on the pile of cotton in the back. It just happened that I used the very same cotton thread for tying around clothes that I shibori dyed with indigo using the usual method. Notice how parts of the thread in the back are quite dark blue. They were exposed to the indigo vat, and the color took well, because indigo can deposit directly on cotton (there are also white parts, but they were just not exposed).

saxonblue_cotton
Saxon blue does not dye cotton well at all – for that, you need an indigo vat.

It was fun to try dyeing with Saxon blue (indigo carmine), but I don’t really see myself repeating the experiment for the purpose of actually dyeing wool. The fact that the light-fastness is low and the process uses concentrated sulfuric acid means that the comparison with indigo itself does not fall out in Saxon blue’s favor.

But if you are wondering what Saxon blue is up to these days, check your candy wrapper. It shouldn’t be difficult at all to find yourself some candies containing FD&C Blue #2 in the US, and E132 in the EU. That’s indigo carmine, or Saxon blue. The stuff in food does not come from natural indigo, it’s synthetic.

If you have appetite for some more dyes, you can also look for natural red 4 (US) or E120 (EU). It may also be written as carmine. Around here, it’s known as cochineal. In this case, the coloring in food does actually come from the natural source. Some people find this disgusting, but having ground the lice so many times for dyeing, I actually find it quite unoffensive.

Finishing and Beginning Anew

I’ve recently completed lots of projects, and begun even more new ones. Spring energy, maybe? Over Easter, I had to study for an exam. I do find it theoretically interesting that you can describe populations of animal and plants mathematically (that’s population ecology) but ultimately, I do prefer to move about freely outdoors and collect plants for my dyepots…

My level of self-pity just soared because I had to study so hard. I decided the best remedy was to give myself a gift – a recently published Danish book on natural dyeing, “En farverig verden” (A Colorful World) by Anne Støvlbæk Kjær and Louise Schelde Jensen, the women behind Uld Guld.

farverigverden

It’s a totally gorgeous book, with beautiful photographs of wool, dyestuffs, and tools. But what a shame that it contains so little information. I’ve yet to encounter anything that is not described in greater detail in my trusty companion, “Farvning med planter” (Dyeing with Plants) by Ester Nielsen.

nielsen

Having completed my exam, I did feel a surge of energy. I’m pleased to say that I’ve now published my pattern, Bilskirner. It took me much longer than anticipated to write and translate the pattern, and have it test knit. But now, it’s up.

BilskirnerCollage

I’ve made kits for the Bilskirner pattern. They contain a pdf pattern and enough yarn to complete a set of hat and mitts/mittens for a child or an adult. The yarn is 100% alpaca, Guldfaxe. The kit comes in two colorways, one where the contrast colors are dyed with cochineal

bilskirnerpink

and one where the contrast colors are dyed with madder and tansy

nyebegyndelser

although they also look quite delicious together, IMO!

kontrastfarver

Edda is a new beginning. An oversized pullover with narrow sleeves, knit in my single ply 100% wool yarn, Norne. This is the prototype, knit in yarn that was dyed in two tones of pink with cochineal. Judging by the past, a pattern is going to take a while for me to write, but it will come.

edda

Edda is knit flat and then connected by grafting down the front, leaving holes between the color blocks (on purpose, on could of course close them)

edda_foran

and the neck is knit on last.

edda_hals

One should always use caution when claiming you invented something new – some genius somewhere always thought of everything… but I haven’t seen other sweaters anywhere with the construction that I used for Edda. The shoulder is shaped using short rows, so it’s comfy and seamless. But more to come on that when work progresses on the pattern.

edda_skulder

The principle behind my Vindauga blanket is refusing to leave my brain. I’m working on a version with striped windows, knit in Fenris 100% wool (450 m/100 g) on a 3.5 mm needle.

Here’s the version in blue and green tones, using yarn from my experiments with indigo, weld, and mugwort.

babyvindauga

Finally, I’m working on an exam project for a course I’m taking on chemistry experiments for teaching purposes. My idea of using indigo dyeing was approved, so I’m beginning to work on my description of how to use indigo in the chemistry classroom. More to come on that!

Green Matrix

Green is a difficult color to achieve with natural dyes. One might initially think that it was easy, given that green is the predominant color in nature. That’s not the case, since the green color of plants comes from chlorophyll, which doesn’t work as a natural dye (since it’s soluble in fat, not in water).

Since I had nice results with indigo overdyeing to get tones of purple, I repeated the process to get green. First, I mordanted my yarn with 10% alum. Then, I dyed it different shades of yellow:

  • a 1:1 bath of weld, gave a strong yellow
  • reused the bath above, gave a less strong yellow. Seen at the lower right in the picture above
  • a 2:1 bath of dry mugwort (so twice the amount of plant than wool) that I collected last summer. Gave a yellow-beige seen in the lower middle of the photo

greenmatrix

Then, I overdyed the different yellows with dark, medium, and light indigo. The 3 blue skeins in the left side of the photo are dyed with indigo on white yarn, just to show the shade of indigo. The next 3 green skeins are indigo on mugwort. The lighter indigo overdyes give dusty shades of green, while the darkest one gives an intense teal. Really worth remembering that such a dull beige can be turned into such nice shades of green.

The next 3 green skeins are indigo on less intense weld, while the last 3 skeins to the right are indigo on intense weld. Generally, indigo on weld gives clear, almost too clear shades of green. The indigo overdye on intense weld really gives an electric shade of green. The Robin Hood kind of green, which used to be known as Lincoln green.