Tansy Experiments

Among some natural dyers, tansy is seen as quite boring. It’s a common plant, easy to find, easy to dye with, and it contains the so-common yellow – just like so many other plants. But tansy has a long cultural history, and its yellow dye is of high quality!

~

Tansy’s common name is simply an abbreviation of its latin ditto, Tanacetum vulgare. I recently ran into a nice (and plausible) explanation of the name in an old Danish book by an important author on natural dyeing, Esther Nielsen. She writes that Tanacetum is probably a derived form of Athanasia (a-thanasos means immortal). Supposedly, the immortality is a reference to the fact that the flowers keep their strong yellow, also when dry.

Tansy, Tanacetum vulgare.

Tansy has been used in herbal medicine for centuries. The plant is poisonous, especially to insects, and was used against intestinal worms. Today, eating tansy is not recommended, and it’s now known that its toxicity comes from the alpha-thujone content in all parts of the plant.

Nevertheless, it was used as a herb in the past, and it does have a very strong smell. I usually boil tansy dye baths outside!

As a natural dye plant, tansy has a lot of advantages. The plant is very common, so you’ll find it growing at just about any roadside – at least here in Denmark, which is in tansy’s native range. Since the plant is so common, it’s completely fine to harvest as much as you need, as long as you cut the flower stalks of, leaving the rest of the perennial.

The yellow color from tansy is very light fast, in my light tests, it always comes out as more fast than weld yellow, which is known for its good light fastness.

According to this paper (Phytochemistry 51, p. 417, 1999), tansy flowers contain a lot of apigenin and luteolin, the same yellow dyes that you find in weld. The leaves contain slightly different compounds (that are similar to luteolin, but not exactly the same). So it makes perfect sense that leaves and flowers give slightly different yellows. I’m not sure, though, why the light fastness of tansy yellow is better than that of weld yellow in my experiments…

After reading about dye extracts (somewhere), I decided to try making a tansy extract. Extracts are obviously a compact way to store dyes, but I thought that they might be interesting for other reasons, for example printing on fabric.

I even found a paper where the authors described concentrating tansy extract to the point that it became a powder. So this is what I tried:

500 g (just over a pound) of fresh tansy flowers and leaves (picked August 11th) were boiled in enough rain water to cover them. I left the pot until the next day, strained out all the plant material, then boiled the extract to concentrate it until it didn’t loose any more water. I also dried it in the oven at very low heat. And the result was a small amount of extremely sticky tansy syrup:

Tansy syrup – dark brown, smelly, poisonous.

So my extract clearly didn’t turn into a powder, but a very dark and sticky syrup. Ages ago, in organic chemistry class, I was taught that syrup means impure product. But I guess that is expected in this case, since I just concentrated a crude extract of the plant, which is a mix of many different compounds.

To test my syrup, I simply dissolved it in water and used it to dye 100 g (3.5 oz) of wool (Fenris) instead of exploring more exciting options. I wanted to see how the dye was affected by being turned into syrup and back again. Here is a comparison with 100 g of wool dyed with 500 g of fresh leaves and flowers (left), 500 g of fresh leaves and flowers dried and then used (middle) and tansy syrup dissolved in water (right):

Fenris pure lambswool dyed with fresh tansy (left), dry tansy (middle), and tansy syrup (right).

The picture above shows, that the color from tansy is the same, whether fresh or dried flowers and leaves are used. And that is good to know – drying does not affect the dye.

The skein on the right, dyed with tansy syrup, is a bit browner than the two others. But other than that, the syrup treatment didn’t really affect the dye potential. Next year, I want to explore plant syrups more!

But once I got started with tansy experiments, more followed. While cleaning up my dyestuff storage, I found some dry tansy leaves from last year (2016). I wondered if long storage would affect the color – in the picture above, there’s no difference between yellow from fresh and dried tansy, but I only stored the plants for a couple of weeks.

I also wanted to answer another question: In order to extract the dye, is it more efficient to finely crush plant matter, or is it OK to throw whole leaves in the dyepot? So I powdered some dry 2017 leaves in my mortar to see if the color intensified, and the result:

12-gram skeins of Fenris, each dyed with 25 g of dry tansy leaves. Whole 2016 leaves (bottom), whole 2017 leaves (middle), and powdered 2017 leaves (top).

The skein dyed with powdered 2017 leaves has exactly the same color as the skein dyed with whole 2017 leaves, so there’s no gain by powdering the leaves. Luckily, since that process is really cumbersome. The 2016 and 2017 leaves don’t give exactly the same yellow, but very close. I don’t think this small difference is caused by an extra year of storage – rather, the fact that the plants didn’t grow in the same place, the difference in weather and harvest time might have caused the small difference in color.

Green Variations

One of the great things about natural dyeing is that you can keep overdyeing until you get the color you want.

~

I recently dug out some green skeins of Norne that were not exactly what I had imagined, and had been sitting in the storage basket for a while. I decided to overdye them to get as many greens as possible. So I wound skeins for dyeing and kept the last part of the skein the way it was.

One skein (skein 1 in photo below) was a medium blue from indigo overdyed with a couple of afterbaths from pomegranate and weld. They gave a rather weak yellow, too weak to match the blue tone, resulting in a quite anemic green.

Another skein (skein 12) had the same problem. Again, a medium indigo blue, this time over dried mugwort dye. I didn’t know at the time I dyed this (as I do now) that dried mugwort only gives a rater weak beige.

Then there was a skein with the opposite problem (skein 5). It’s dyed with a strong (1:1) weld and overdyed with weak indigo, giving a green/Chartreuse that’s just too intense.

Finally, there’s a skein that was actually a good color (skein 9) but I just didn’t have any plans for it. I dyed it long ago with tansy and a madder afterbath to achieve a warm yellow. I wound all the skeins into smaller ones and overdyed them with indigo, weld, and walnut hulls.

Overdyeing and then some more overdyeing, to get as many greens as possible.

Skeins 6, 7, and 8 come from skein 5 and are just overdyed with stronger and stronger indigo, and there’s no surprises there. The strong yellow base ends up as a clear forest green when the indigo component becomes large enough.

Skeins 10 and 11 are yarn from skein 9 overdyed with a bit of indigo and a bit more. Here, skein 10 was a nice surprise, a wilted green, one of my favorite shades of green. I suppose I am really revealing myself as totally ignorant of color theory, but I did not know that this type of green contains such a large proportion of red.

I made a dye bath with 12 g of weld and dyed 25 g of yarn from skein 1 in it. That turned into skein 2 – not a surprise that the forest green emerges when you lift the level of yellow to match the blue in intensity.

Then I made a dye bath with 25 g of walnut hulls. 25 g of yarn from skein 12 turned into skein 13. Again, the ignorant dyer was surprised – turns out army green is based on brown. The afterbath turned yarn from skein 1 into skein 3, another army green.

Skein 4 is yarn from skein 1, overdyed with a rather intense indigo. Here, the weak yellow base gives a really nice teal. Skein 14 is yarn from skein 12 just overdyed with a bit more indigo than it already was.

Finally, there’s skein 15. The yarn comes from skein 12, and was first dyed in the weld afterbath. It didn’t change much, so I dyed it in the walnut hull bath, which had already been used twice. Again, not much change, so I dipped it in indigo. That still didn’t change much so I left it because I ran out of ideas.

Skein 16 and 17 are both dyed with stinging nettle, said to contain a green dye. In the middle of May, I picked a big dyepot full (and they have no problem stinging through thick garden gloves) and dyed two 25-gram skeins. First skein 16, then skein 17 in the afterbath, followed by modification with a bit of iron. None of the skeins 16 and 17 are green but they work really well along all the other greens. Here they all are, along with an indigo-dyed skein, wound in cakes and ready to knit:

All the green yarn cakes, ready to knit.

I am experimenting with knitting very short scraps of all these colors together, more about that another time. So far, it looks like this:

Norne cut in short scraps and knit – color changes by doubling both the new and the old yarn.

But the search for greens doesn’t stop here. In addition to stinging nettles, May is also full of landscapes covered by wild chervil and broom.

I tried dyeing with common broom last year, but picked the plant too late in the season and got very little color out of it. In their “Dye Plants and Dyeing”, Cannon & Cannon write that flowering stems of broom should be harvested in April or early May. I managed to pick them late in May, which is probably fine since the book is English and most of England is south of Denmark.

On alum mordanted Fenris (pure wool), common broom gives me the greenish-beige that Cannon & Cannon promise. They show an almost black with copper, so I tried modifying with copper water for a few minutes. I have a jar that contains the innards from an old wire in household ammonia, and I just added a bit of it. This gave a very pretty green, which is leaning towards brown.

Wild chervil (also picked in late May) gave the expected fragile yellow with a touch of green. To some eyes nothing special, and for sure, there are many ways to get such tones. But I do find it lovely, it just captures the freshness of spring and early summer. Modified with iron, the color darkens and completely looses the freshness.

Yellow and greens dyed with common broom and wild chervil. The large skein on top is dyed with wild chervil, the one below the same but modified with iron. The third skein is dyed with common broom, the fourth common broom and copper.

Hypogymnia Lichen Windfall

I return from many of my walks with pockets full of lichen windfall. One of the common finds under trees is two slightly different species of Hypogymnia, a good dye lichen.

~

Lichen windfall is perfect for dyeing, since it does no damage to just pick up the fallen lichens. I’m therefore writing a small series of posts on the different species of lichens typically found in windfall, and I’ve already written about Ramalina fastigiata.

This time, I’ll have a look at Hypogymnia physodes and Hypogymnia tubulosa, two common species that are closely related (that’s why part of the name is the same). Also, they do look alike – both are grey-green and foliose (flattened, leaf-like). Hypogymnia physodes, here seen covering a small branch, has flat lobes, sometimes with soredia on the outer part. Soredia is one of the way that lichens can reproduce, and break through the surface in lots of little dots, making the surface look grainy or powdery. In Hypogymnia species, the soredia are found on the bottom side, which folds up on the tips of the lobes, making the grainy lower surface visible:

Hypogymnia physodes covering a small branch. Detail on the right shows the lobe tips folded up, displaying the graininess because of the soredia.

Hypogymnia tubulosa looks a lot like Hypogymnia physodes, but has hollow lobes. In the right side of the image below, the hollowness is visible since I cut one of the lobes:

Hypogymnia tubulosa with a cut lobe on the right side.

Both species are very common, and grow in many places, including on trees, stones, and wooden surfaces. They like growing on acidic substrates, and Dobson’s “Lichens, An Illustrated Guide to the British and Irish Species” mentions that Hypogymnia physodes is among the species least sensitive to sulfur dioxide pollution. Hypogymnia tubulosa is a bit more sensitive.

The dye content sometimes differs a lot even for species that are otherwise very similar. So I decided to test if the two species give the same color.

I used unmordanted yarn, since lichen colors are substantive. I made one dyebath with 9 g of Hypogymnia tubulosa, and put a 12-gram skein of Fenris (pure wool) and a 5-gram skein of Bestla (merino-silk) in. Another dyebath was 15 g of Hypogymnia physodes, and two 12-gram Fenris skeins and one 5-gram Bestla skein went into that one. So half the weight of lichen compared to fiber in both cases. I modified one of the Fenris skeins in an iron afterbath.

Both lichens give the same color – a fine, dusty yellow, the completely expected shade from bwm lichens. So in conclusion, no reason to sort Hypogymnia physodes and tubulosa. The merino-silk takes the color a little less well than the pure wool, and an iron afterbath does significantly darken/sadden the color at turn it green.

Left: pure wool and merino-silk dyed with Hypogymnia tubulosa. Right: pure wool and merino-silk dyed with Hypogymnia physodes, further right a pure wool skein dyed with the latter, modified with iron.

An Earthball Study

Earthballs contain a yellow-brown dye, but also a large and annoying amount of tiny, black spores. So I set out to find out if the spores contain any dye or if they could just be discarded.

~

Common earthball, Scleroderma citrinum.

A couple of years ago, I dyed a lot of yarn with earthballs. The color turned out a nice yellowish brown, but the yarn was simply full of spores that continued to drizzle out, both when winding the yarn into skeins and when knitting with it.

The drizzling pores were obviously annoying, but I also started wondering if the spores are even safe to breathe? It’s usually said that earthballs are “moderately toxic”.

In their book “Färgsvampar & svampfärgning” (Dye mushrooms and dyeing),  Lundmark & Marklund label earthballs “good” dye mushrooms, so it would be a pity to give up on earthballs just because of the spore problem. Lundmark & Marklund mention that earthballs contain the dyes badion A, norbadion A, and sclerocitrin.

Sclerocitrin is also described in the research paper “Unusual Pulvinic Acid Dimers from the Common Fungi Scleroderma citrinum (Common Earthball) and Chalciporous piperatus (Peppery Bolete), Angewandte Chemie International Edition, 2004, 43, 1883-1886 by Winner et al. They show that the “brilliant yellow” dye sclerocitrin is found in “remarkable amounts” in earthballs. As the title says, sclerocitrin is also found in peppery boletes. I haven’t looked for it, but a mental note has been made.

Earthballs have a dark or black spore mass inside, surrounded by a relatively thin outer wall. I decided on a small experiment in order to see if the spores contain any dye. If not, it would make sense to just leave them in the forest.

Halved earthballs with grey and black spores inside.

I used as small amount of earthballs for my experiment, gathered during the fall of 2016 and dried until use (2016 was not a good mushroom year, so not many earthballs were to be found).

Separating the spore mass from the mushroom’s outer wall was incredibly difficult. The parts were completely stuck together in the dry mushrooms, but in the end, I had 23 g of out walls and 10-11 g of spores. I soaked both overnight, the outer walls simply by adding water. The spores were stuck together in stone hard lumps that I separated by grinding them in my mortar. The spores repel water, I solved that by wetting them in denatured alcohol, then adding water.

The next day, I boiled the two dye baths and filtered the spore bath through a coffee filter. It took very long for the liquid to run through, that’s always the case when filtering a solution with many tiny particles. I then dyed a 10-gram alum mordanted test skein (Fenris 100% wool) in each bath, and got the result below – almost the same color from the two.

The top skein of yarn in the picture is dyed with the outer walls, the bottom one with the pores. I had hoped to find that the pores didn’t dye, but clearly that’s not the case. In principle, it’s not surprising, though, to find that sclerocitrin and the other pigments are distributed throughout the mushroom. The dark color of the spores is not caused by a pigment that acts as a dye.

In conclusion, all parts of the earthball contains dye, and discarding the pores would mean discarding a lot of good dye. So the best method for earthball dyeing would be using the entire mushroom, wetting the spores with alcohol, and then investing the time required to filter the entire dye bath before any wool is added.

Yarn dyed with different parts of earthballs. The top skein is dyed with the outer walls only, the bottom skein with pores only.

Læs dette indlæg på dansk

Seasonal Color Variation

An experiment with yellow to green tones of birch leaves over the summer. I didn’t see any difference, but most experiments do have different outcomes than expected.

~

A fresh new year calls for a new, big series of dye experiments, but I’m going to begin with an old one that was going on for so long that I never wrote about it.

“Yellow can be many things, so for each plant, I will  specify the particular yellow it gives. There will always be differences, the tone being more green earlier in the year.”

This is what Ester Nielsen writes in her introduction to natural sources of yellow in her book “Farvning med planter” (Dyeing with plants). This Danish book, published 1972, is full of useful information, but such a claim as this is just begging to be tested. I decided to use birch leaves for the test.

Birch leaves. It’s impossible to tell from the outside that they contain a good, warm yellow color.

To test the claim that colors are greener early in the growing season, tending towards yellow later, I made two 10 g test skeins of supersoft wool. I dyed each of them with 40 g of fresh birch leaves, since Ester Nielsen recommends 4 times the weight of fiber in fresh plants (twice the weight of fiber if using dried plants). I picked the first portion of leaves on May 11th, the second on July 4th.

The picture below shows the result. The skein in front is dyed with the leaves from May, the back one with thw leaves from July. They’re almost the same color, so my little experiment didn’t back up Nielsen’s claim…

Wool dyed with fresh birch leaves. The front skein is dyed with leaves picked in May, the back one with leaves picked in July.

To check for other possible differences, I tested the light-fastness of the two skeins. But again, no difference. The only thing worth noting in the light test shown below is a really good light-fastness of both yarns. The test took place over more than a month of summer.

Light test of wool dyed with birch leaves picked in May and July.

My conclusion: the time of harvest does not affect the color achieved with birch leaves. But that may only apply to birch leaves. It is possible that other plants to have a variation from yellow-green to yellow as the summer passes.

Late Summer Greens

This summer, I’ve dyed a nice pile of green wool using reed flowers and velvet pax – two dyestuffs that are a highlight of the dyer’s year. Reed flowers because they give such an electric green. You have to admit it’s a bit strange that these red flowers dye wool a wild green, but only if you get them into the dye pot absolutely fresh. If the flowers have opened or are not freshly picked, they will only give yellow. Velvet pax because its dusty greens are so lightfast. The two skeins in the back are dyed with velvet pax, the three in the front with reed flowers.

grøn green
Greens from reed flowers and velvet pax, the essence of late summer dyeing.

I’m becoming better at finding velvet pax. The first couple of years, I looked for it too late in the season. This year, I’ve found it growing several places, for example this archetypical plantation, where Dagmar is picking a big one. Just the kind of place that velvet pax likes to grow.

Dagmarplukker
Dagmar picking velvet pax (with the arm that’s not broken).

Velvet pax can be found in August, and this year, everything was early, so it was there at the beginning of August. And the mushrooms were huge – I found some that were 25 cm across.

sortfiltet
Characteristic brown tops of velvet pax, captured in a typical habitat.

Big, fat spiders are another joy of late summer. This one, which is possibly the fattest spider I’ve ever seen, lives outside our house. When I was sticking my camera right in its face, the neighbor’s big dogs started barking. Immediately, the spider lifted its front legs as if to attack. I chose to run away, so I only got a good shot from underneath the spider, where its pattern looks a bit like eyes. I think it’s a very light colored cross spider, since its body is pointy at the back. After reading that they can bite if provoked, I think my decision to flee was not a bad one.

edderkop
My pet spider.

Summer is also the time of year to test light-fastness. I tested a handful of colors on the windowsill from early July to mid August, and their light-fastness was quite different.

  1. Old polypores, the two top ones warm baths and the lower one a cold bath that brewed outside for some weeks. None of these yellow browns are very light-fast.
  2. Velvet pax, the color didn’t change. I’ve seen this light-fastness in previous test, so it really is that good!
  3. Orange Cortinarius mushrooms, I don’t know which species. Not that light-fast
  4. A matrix of madder and indigo, showing that saturated colors are much more light-fast than pastels
  5. Sorrel root, not very light-fast
  6. Birch leaves. Surprisingly light-fast
  7. Weld. Surprised by the fact that it’s less light-fast than number 6…
  8. Henna on alpaca. I’d say this is a medium light-fastness
  9. Calendula flowers. Surprisingly light-fast
Light testing summer 2016.

I’ve also dyed with tansy, which doesn’t give green, but “just” yellow on alum mordanted wool (no pictures of that). But when I admired the flowers, I suddenly wanted to check if they really do stick to Fibonacci numbers.

The Fibonacci series begins with two ones, and then the next numbers are found by adding the two previous ones:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.

The last time I thought about Fibonacci numbers were for calculating the numbers of my Vindauga blanket where rectangles obey the golden ratio, approximated by the ratio between neighboring numbers in the Fibonacci series, eg. 55/34 = 1.61.

Below is a close-up of a tansy flower. And as promised, the numbers of rows of tiny buds are Fibonacci numbers – 13 clockwise rows and 21 counter-clockwise.

DSC_2985
Tansy flower obeying Fibonacci’s sequence.

Old Polypore

Dyer’s polypore is one of the very good dye mushrooms found here in Denmark (and many other places, including the rest of Europe and North America). It grows on dead wood, or parasitically on the roots of living trees. It grows in the same spot year after year, and grows a new fruiting body every year. That means you will often find dried-up mushrooms from the previous year close to the fresh growth of the year.

I’ve often found myself standing in a forest with a bunch of dry polypores from the year before, thinking that it was really too bad that they were wasted. So I decided to collect some, to test if they still contain any dye.

oldmushroom

I tried a single mushroom, weighing 24 g (it obviously would have weighed much more when it was fresh). I chopped it mushroom in small bits, and that partially powdered it.

I tried the dye bath on a 10 g test skein alum mordanted wool, and it turned a nice yellow-brown. So I used the bath a second time, and got a lighter shade. The old, dry mushroom clearly has a smaller dye potential than the fresh ones, but it does contain dye, so there’s no reason to leave it behind in the forest.

oldpolypore

Save

Save

Reed Flowers

lakereeds

Reed flowers are in season! I took the photo above on a beautiful August day at the lake. The sound of the wind through the reeds is positively mind-cleansing, which apparently I’m not the only one to think, judging by the number of YouTube videos of just that phenomenon. So now you too can enjoy it, even if you are in a skyscraper somewhere:

But I can promise you there was nothing mind-cleansing about my search for this dyestuff. They often grow a little bit out into the water, in places that are a bit hard to reach. I found a good patch of them growing in shallow water, I just had to cross a small forest. It looked fine, but it was actually a bottomless swamp, which I sank into to mid-thigh. Afterwards, I was a bit shocked, but otherwise fine! And I picked about 100 g of the silky soft, discreetly burgundy colored flowers: reedflowers

I rushed them to the dye pot – you have to use them fresh – and this is what I got on 20 g of supersoft in the first bath, 10 g in the second: first a lovely green, then a cold yellow:

reeddyedwool

FACTS – FRESH REED FLOWERS

Mordant 10% alun

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio 5:1 in first bath, 10:1 in second

Conclusion I love this green color, it’s beautiful and has a good light-fastness

Possible improvements The only one I can really think of is, that reeds should spontaneously grow in places that are easier to reach for the natural dyer

Last summer, I collected reed flowers while on holiday, and brought them home with me. I didn’t know that you have to put them fresh into the dye pot. The results were pleasing enough, although more towards yellow than green.

I have knit with the reed flower dyed wool from last year, and used the remaining scraps for light testing. These were on the windowsill for about a month from mid July to mid August. With this daylight calculator and a simple spreadsheet, I find that the samples for the 1st, 2nd, and 3rd bath of 2014 reed flowers got 572, 497, and 481 hours of daylight, respectively (since they spent the intervals 9/7-15/8, 10/7-11/8, and 11/7-11/8 on the windowsill). This is what they look like afterwards: the left side of each card has been covered, and the right side exposed:

reedflowerslighttest

A very good result indeed. You can tell that the paper has yellowed slightly from the exposure, but the yarn has only changed very slightly. The change is towards the yellow, so the green component seems to fade, but the color intensity is quite unchanged.

Dyeing with Sorrel Root

Sometimes when I read something and there is one key word that doesn’t compute, it’s like my brain just jumps over the entire topic. Some time ago, searching for information on Xanthoria parietina and its pigment parietin, I came across information on the Rumex family. This is what I wrote back then

Parietin, Wikipedia informs us, is also found in the roots of curled dock (Rumex crispus). Jenny Dean lists the roots of curled dock, dock, and sorrel as sources of reddish browns, but I’m not sure if that has anything to do with its parietin content

but I didn’t connect it to anything, because I didn’t immediately see a plant in my mind’s eye. This summer, I actually went through the trouble of looking it up (sic), and found that it is a very common plant around here.

I gathered these plants in late June:

rumexplant

and I’m quite sure it’s Rumex acetosa (common or garden sorrel) which, according to this, you can also eat the young leaves from. It often grows in damp or even wet places. It is actually a bit hard to pull the root up, it’s easier the wetter the soil.

I tried dyeing with the roots according to the method in Jenny Dean’s “Wild Color”: I took 150 g of fresh roots, washed and chopped them, and at that point you can tell that they have some color in them:

rumexroot

I then soaked them overnight, although I’m not sure that step is necessary when using fresh roots. No color worth mentioning came out of it at that point…

But it did give very nice reddish brown (just as Dean promised) when heated. I just kept repeating with 10-g test skeins, it took 4 skeins to exhaust the bath. That’s a very good dye bath in my book! All the plant tops from those roots gave a brownish red-tinged yellow which is actually pretty nice, but I just tried that one one skein. Together they look like this – front to back its first to fourth root bath, then the plant tops all the way in the back:

rumexdyedwool

The result is quite pleasing, I think, and I began seeing similar plants just about everywhere. Another one that’s common around here is this one

rlongifolius

which is another member of the Rumex family, probably Rumex longifolius (dooryard dock) or Rumex crispus (curled dock). I’ve dug up some of these and dried the roots, to be saved for the meager dyeing days of winter.

FACTS – Rumex acetosa roots

Mordant 10% alum

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio 1:15 fresh roots was enough for 4 dye baths

Conclusion Lovely red-brown color

Possible improvements Not sure! This works!

Save

Save

Summer Days Dyeing

Summer finally came roaring with several days of temperatures around 30C (yea, hot for Denmark!). We’ve been outside almost all the time, except the times I’ve had to go into the house and check my dye pot on the stove.

Our garden is wonderful right now, the highlights are Sweet William (Dianthus barbatus)

sweetwilliam

flowering thyme with bumblebees

thyme

and elder at its midsummer best – so fragrant

elder

But I also have some potential dyes growing! Here is pot marigold which is growing everywhere in our garden because of extremely efficient self-seeding. It should give a nice yellow at some point

potmarigold

And then there is this. My woad plants. Previous attempts I’ve made were completely unsuccessful, so I’m very pleased that they are growing at all

woad

And finally, Japanese Indigo. I had to put them in a plot of hard and dry soil because we ran out of good spots, so I don’t know how they will grow. I’ve never grown them before!

japaneseindigo

But instead of just waiting around for these plants to grow, I’ve been on several good walks to gather dyestuffs.

On the very last day of June, my daughter and I ventured out to gather some of the bounty of wild growing lupines that have been flowering for the past few weeks. And it was probably good we didn’t wait any more, because most of them had already produced seeds on the lower half. I gathered just the flowers

lupinflower

150 g of purple lupin flowers went into the dye pot, and I waited for my green yarn to finish. Only it wasn’t green, but just one more yellow. A nice dusty baby yellow, but – yellow

lupindyedwool