Easy Knitting

Last week, I brought my yarn and kits to a market, and took the chance to chat with lots of people.


Lots of people stopped by, some drifted by on their round of the entire market, others stopped to chat.

There were two things that most people told me. The first one: they really liked my colors, and didn’t need to be told that I only use natural dyes. And I completely agree! These colors basically shout that they are natural:

My color circle – blue of course from indigo, purple from cochineal and indigo overdyeing, reds from madder, yellows from tansy, greens from indigo + plants, and dusty greens from whole leaf Japanese indigo.

The second one: people seemed to like my designs, but thought they were complicated. And well, I sort of knew that. I use techniques like provisional cast ons, grafting and so on, because it gives better results. I insist that these results are better, but I do understand that many people find such techniques difficult, or think they are.

So here’s my resolution. I will write easier knitting patterns. I’m reworking my Vindauga Baby pattern, making a version that only uses standard knitting techniques. I’m going to keep the picot edge, that one is easy, and very decorative. My plan is to release the pattern again, this time with an easy and a challenging option.

Purple, easy Vindauga Baby blanket.

Finally, I’ve deployed my secret weapon. My Mom! She dug through all my yarn, and found this:

Fenris dyed with indigo (left), with indigo and cochineal (middle), and Norne dyed with whole leaf Japanese indigo (right).

To begin with, she has her hands on the blue-green skein of Norne (that sort of had my name on it). Her plan is simple, geometric garter lace, it’ll be interesting to follow the progress.

Knitting Better Stripes

Knitting stripes is so addictive. Here’s a simple technique to make the color change from one stripe to the next smoother when knitting in the round


I’m working on the design for a girl’s dress in multicolor stripes. It has a turned picot edge and it’s knit top-down. The first prototype is knit in Fenris (100% wool, 450 m / 100 g or 492 yd / 3.53 oz) dyed with madder, indigo, woad, Japanese indigo, and a series of purples from cochineal overdyed with indigo.

Dagmar running over a harvested field on one of the last days of summer.
The dress has a round yoke and turned picot edges along neck, arm, and lower hem. Notice the cluster of trees in the left side of the photo – a burial mount from antiquity.

In order to make the color change from one stripe to the next as nice as possible (even though it’s on the back), I used this technique:

After changing to a new color, first knit an entire round, then remove the end-of-round marker.

The first stitch that was knit with the new color is now the right-most stitch on the left needle – the stitch you were just about to knit. Insert the left needle through the stitch right under it from the right side. Don’t let go of the stitch that was already on the needle. You now have two stitches instead of one, and they are not the same color:

Two stitches together, different colors because they come from two different stripes.

Now, knit the two stitches together (with a k2tog) and replace the end-of-round marker. The change of round has now moved one stitch to the left, but that is OK.

The two stitches knit together, and the marker replaced.

The result is this:

The yoke of the dress with jogless stripes.

Not perfect, but a huge improvement over just cutting the old yarn and adding the new.

Læs dette indlæg på dansk

Green Variations

One of the great things about natural dyeing is that you can keep overdyeing until you get the color you want.


I recently dug out some green skeins of Norne that were not exactly what I had imagined, and had been sitting in the storage basket for a while. I decided to overdye them to get as many greens as possible. So I wound skeins for dyeing and kept the last part of the skein the way it was.

One skein (skein 1 in photo below) was a medium blue from indigo overdyed with a couple of afterbaths from pomegranate and weld. They gave a rather weak yellow, too weak to match the blue tone, resulting in a quite anemic green.

Another skein (skein 12) had the same problem. Again, a medium indigo blue, this time over dried mugwort dye. I didn’t know at the time I dyed this (as I do now) that dried mugwort only gives a rater weak beige.

Then there was a skein with the opposite problem (skein 5). It’s dyed with a strong (1:1) weld and overdyed with weak indigo, giving a green/Chartreuse that’s just too intense.

Finally, there’s a skein that was actually a good color (skein 9) but I just didn’t have any plans for it. I dyed it long ago with tansy and a madder afterbath to achieve a warm yellow. I wound all the skeins into smaller ones and overdyed them with indigo, weld, and walnut hulls.

Overdyeing and then some more overdyeing, to get as many greens as possible.

Skeins 6, 7, and 8 come from skein 5 and are just overdyed with stronger and stronger indigo, and there’s no surprises there. The strong yellow base ends up as a clear forest green when the indigo component becomes large enough.

Skeins 10 and 11 are yarn from skein 9 overdyed with a bit of indigo and a bit more. Here, skein 10 was a nice surprise, a wilted green, one of my favorite shades of green. I suppose I am really revealing myself as totally ignorant of color theory, but I did not know that this type of green contains such a large proportion of red.

I made a dye bath with 12 g of weld and dyed 25 g of yarn from skein 1 in it. That turned into skein 2 – not a surprise that the forest green emerges when you lift the level of yellow to match the blue in intensity.

Then I made a dye bath with 25 g of walnut hulls. 25 g of yarn from skein 12 turned into skein 13. Again, the ignorant dyer was surprised – turns out army green is based on brown. The afterbath turned yarn from skein 1 into skein 3, another army green.

Skein 4 is yarn from skein 1, overdyed with a rather intense indigo. Here, the weak yellow base gives a really nice teal. Skein 14 is yarn from skein 12 just overdyed with a bit more indigo than it already was.

Finally, there’s skein 15. The yarn comes from skein 12, and was first dyed in the weld afterbath. It didn’t change much, so I dyed it in the walnut hull bath, which had already been used twice. Again, not much change, so I dipped it in indigo. That still didn’t change much so I left it because I ran out of ideas.

Skein 16 and 17 are both dyed with stinging nettle, said to contain a green dye. In the middle of May, I picked a big dyepot full (and they have no problem stinging through thick garden gloves) and dyed two 25-gram skeins. First skein 16, then skein 17 in the afterbath, followed by modification with a bit of iron. None of the skeins 16 and 17 are green but they work really well along all the other greens. Here they all are, along with an indigo-dyed skein, wound in cakes and ready to knit:

All the green yarn cakes, ready to knit.

I am experimenting with knitting very short scraps of all these colors together, more about that another time. So far, it looks like this:

Norne cut in short scraps and knit – color changes by doubling both the new and the old yarn.

But the search for greens doesn’t stop here. In addition to stinging nettles, May is also full of landscapes covered by wild chervil and broom.

I tried dyeing with common broom last year, but picked the plant too late in the season and got very little color out of it. In their “Dye Plants and Dyeing”, Cannon & Cannon write that flowering stems of broom should be harvested in April or early May. I managed to pick them late in May, which is probably fine since the book is English and most of England is south of Denmark.

On alum mordanted Fenris (pure wool), common broom gives me the greenish-beige that Cannon & Cannon promise. They show an almost black with copper, so I tried modifying with copper water for a few minutes. I have a jar that contains the innards from an old wire in household ammonia, and I just added a bit of it. This gave a very pretty green, which is leaning towards brown.

Wild chervil (also picked in late May) gave the expected fragile yellow with a touch of green. To some eyes nothing special, and for sure, there are many ways to get such tones. But I do find it lovely, it just captures the freshness of spring and early summer. Modified with iron, the color darkens and completely looses the freshness.

Yellow and greens dyed with common broom and wild chervil. The large skein on top is dyed with wild chervil, the one below the same but modified with iron. The third skein is dyed with common broom, the fourth common broom and copper.

Spring Cleaning

In the summer, when all the plants stand tall, I usually collect good bundles of tansy, yarrow, and other wild dye plants. And they have to go before the next harvest.


My dyestuff stores from last year contained big bundles of mugwort and tansy, a smaller amount of yarrow, a box full of dry velvet pax, and dry pomegranate shells (among other things).

Spring has shown itself from its worst side this year, but I’ve managed to get outside with my little stove on an extension cord, working to bring down the amount of stored dyestuffs.

First, velvet pax. I found quite a nice harvest of this mushroom last year, more than half of what i found was from driving through a small forest, spotting the mushrooms, and hitting the brake!

I had 190 g of dried mushrooms. On 100 g of wool, that gave a good green (middle skein in photo below) and the afterbath a green-beige (right). I could not capture the color in the photo, but I was pleasantly surprised how well the dried mushrooms retain the color potential, including the green tones. In conclusion, velvet pax is a very good dye mushroom, fresh or dry.

There’s a beige skein on the left in the photo below. That’s 100 g of yarn, dyed with enough dried mugwort to fill a large dye pot completely. I even gave it an iron afterbath. Thinking back, this is actually the second time i get dull beige from dry mugwort, and the conclusion is that it does not dry well. The fresh plant, on the other hand, gives a nice yellow-green.

From left: dried mugwort and iron, dried velvet pax, 1. and 2. bath.

Next up, pomegranate shells. I had saved a very modest amount of shells, from just two fruits, weighing 85 g dry. I followed Jenny Dean’s “Wild Colour” and put the shells in a plastic bag and pounded them with a hammer. To test the new (to me) dyestuff, I wound two 12-gram skeins of Fenris (100% wool) and a small 5-gram skein of Bestla (silk-merino).

The pomegranate shells gave nice yellows on wool and silk. I modified one of the wool skeins with iron, and that gave a darker, greener tone, that actually looks a lot like the color from velvet pax.

Next time people eat pomegranates around here, the shells will be saved. They give a nice color, and they are available during winter, where little else is there in terms of fresh colors.

Pomegranate shells on silk-merino (back) and wool (middle), and modified with iron (front).

Several large bundles of yarrow, tansy, and mugwort turned into the yellow-beige first dye for a new round of matrix dyed yarn for Baby Vindauga kits. The second yellow os weld, and the skeins are overdyed with indigo as usual to produce the 9 different blues and greens.

Matrix dyed wool in blue and green.

And once I got started, a matrix in purple and blue, using cochineal and indigo, also appeared.

Matrix dyed wool in purple and blue.

The matrix skeins turned into contrast colors for new Baby Vindauga Kits, you can see them at my Etsy shop:

Purple-blue Baby Vindauga Kit.
Green-blue Baby Vindauga Kit.

A Herd of Hats

What’s the collective noun for hats? “Herd”? “Flock”? “Mob”? “Head”? Or, in my case, “parliament”, or even “pandemonium” may even soon be appropriate. I can’t seem to stop knitting them.


I’ve been working on two new designs for hats, a lacy one that leapt out at me from a Japanese pattern dictionary, and one in stranded knitting that came about by swatching. Yes, swatching.

Brisingamen is inspired by a Japanese pattern, and knit in two layers all over. The entire inside is knit in Bestla, a 35/65 mix of silk and merino, the entire outside is Norne, my 1-ply pure wool lace yarn. It took a bit of hard thinking to come up with a way to line both the hem and the rest of the hat – in the end, I went with two provisional cast ons. That may sound incredibly complicated, but it’s really not. And the result really is excellent. Since the gauge is small, the double fabric is thin, but very warm, even when it’s windy.

Here’s Dagmar on a snowy day a while ago, wearing the first prototype, knit in undyed yarn. It turned out too small for me, but fits her just perfectly.

Dagmar happily wearing the Brisingamen prototype.

For the final version, I only had to do small recalculations. A triple cable replaces the single line of twisted stitches between motifs, and the rib is longer. Here it is, almost done, in yarn dyed with 1:1 madder. I’ve dyed with madder on pure wool so many times, and still love how it takes the color. Silk merino takes the same dye in a slightly different, no less delicious, way. Perhaps it is the silk sheen that alters the look just slightly.

Brisingamen hat, the outer layer is pure wool, the inner silk-merino. Both dyed with madder root.

Folkvang is a tam that was inspired by Bohus patterns. Since I first read about Bohus patterns, I’ve wanted to make something using them as a starting point.

I started swatching to try patterns out. In the beginning, I wanted an arched pattern, so that’s how the swatch starts out (right side). But the arch didn’t behave, and I realized that you would have to work 3 colors in one row to make an arch that separates areas with two different background colors. I hate knitting 3 colors at a time, so I continued the swatch with rectangular shapes.

First, a white rectangle on a blue and green background. It’s OK, but the purl stitches on the long edges don’t add anything. Next, a blue rectangle on beige background. Purl stitches inside the rectangle add texture that makes the pattern more interesting. Now, I was on to something. I changed to white background, kept the dark indigo blue as the contrast color, and added in a bright green band of background color. I was getting close, and was finally happy with the pattern when I let the white background peek into the purled inside of the rectangle, and softened the bright green with a bit of beige.

The Folkvang swatch. White background with contrast colors blue (indigo), dark green (tansy and indigo), beige (velvet pax 2. bath), and bright green (reed flowers).

The vertical lines of blue purl stitches just beg to be lined up with purl stitches of a corrugated ribbing, so that’s what I did:

The Folkvang tam, flying off the needles.

The hem is lined with silk-merino. The outer part is knit in Fenris, which is excellent for color knitting, but really not that soft.

In order not to break up the corrugated ribbing when progressing from the hem to the main body of the hat, I used a new (I think?) way of closing the hem in color knitting.

In the photo below, you see the corrugated ribbing in front. The provisional cast on is undone, and the live stitches put on a needle, sitting behind the work. Now, holding the yarns appropriately for color knitting (blue is my dominant color, so it’s towards the left because I knit continental), I purl the purl stitch with blue, then knit together 3 white stitches with white, one from the front needle and two from the back. This leaves the purl columns unbroken, very satisfying to the obsessive knitter.

Closing the hem in color knitting.

Vindauga Baby

The design theme from my Vindauga Blanket just stayed in my brain after I knit the first one, demanding to be knit in more variations! And when that design theme met with my experiments in 2-dimensional gradients (or matrices), the result was the Vindauga Baby Blanket, which I’ve finally managed to publish the pattern for.

You can buy the Vindauga Baby Blanket pattern on Ravelry. I’ve also dyed a small number of kits, you can find them at my Etsy shop. The colorways are purple-blue (dyed with cochineal and indigo – sold out), red-blue (dyed with madder and indigo) and green-blue (dyed with weld, mugwort, and indigo).

From a set of 9 skeins of matrix-dyed yarn (on the left) to the Vindauga baby blanket.

I’ve now written the pattern, had it test knit, and corrected over and over again. It’s finished, and now published in Danish and English. I’ll be the first to admit that actually finishing a pattern is not my favorite part of the process from idea to pattern. But if I don’t pull myself together at some point, then my ideas end up as just that – ideas in my head.

But dyeing the matrix mini skeins is a lot of fun. I’ve worked with these 2-dimensional gradients for some time now, but it’s still difficult to get them just exactly right!

First, I dye gradients of red, pink, or red with madder, cochineal, weld, tansy, or mugwort. I make 3 skeins of each. Then, I overdye with an indigo gradient, giving each of the 3 identical skeins a different indigo overdye. This may not sound difficult, but both steps are hard to control.

When dyeing with cochineal and madder, I find that the first bath always gives a more intense color than the second one. But sometimes, the second and third give about the same. It’s also difficult to control the exact shade of blue with indigo dyeing. One factor is how long you dip skeins in indigo, another factor is the number of dips. But the amount of available indigo in the vat also changes over time. Even after making many sets of matrix dyed skeins, it’s still a challenge!

indigo overdye
Yellow, red, and white skeins soaking on the left. On the right, similar skeins in an indigo bath. The temperature is 52 degrees, pH is 9-10. Everything is under control!

See projects on Ravelry:


I’ve finally finished harvesting my dye plants and seeds, and it has been an abundant year in the dye garden. In addition to woad seeds, I’ve also harvested seeds of dyer’s coreopsis. I harvested some of them on September 27th, and a lot more when I removed the last plants on October 24th. I don’t know when they should be harvested, but I suppose I’ll see if any of them sprout next year.

Seeds of Dyer’s Coreopsis. Lots of them, and they are tiny.

Then there’s my Japanese indigo, which  grew really well this year. I harvested most of my Japanese indigo, 22 plants, on September 27th. I tried two different ways of drying the leaves.

First, I stripped the leaves off the stems, spread them out outside on a sunny day. They almost dried, and I moved them inside in a mesh hanger before dewfall that evening. In a couple of days, they were completely dry.

Drying Japanese indigo bunches. Only the outer leaves dry this way!

Second method (because stripping the leaves off was so time-consuming) was borrowed from Deb McClintock – I hung bunches of leafy stalks to dry inside because by then, the season had changed and the first fall storms and rains were here. But after a week, only the tips of the leaves had dried, because the thick stalks retain all the moisture. I’m sure that would not be a problem under a hot Texas sun, but this isn’t exactly Texas! In the end, I stripped the leaves off the the half-dried stalks and let them dry. So although option two seemed easier, it’s not really an option here – next time, I’ll know there’s no way around a bit of tedious work.

I ended up with a bit more than 400 g of dry leaves, and they are showing a blue tinge. Definitely a good sign.

My dry Japanese indigo leaves with a blue tinge.

The rest of my Japanese indigo, maybe 8 plants, stayed in the garden. In late September, the plants had quite a few buds, and I wanted to leave some to see if they would flower and maybe even produce seeds. I followed the weather forecast closely to see when the first night frost would come. That was forecast for the evening of October 24th, so I went to our garden that afternoon to harvest the last plants. And they did flower – but no seeds.

Japanese indigo flowering in late October.

The last crop was used for a bit of experimentation, trying to extract indigo from the fresh leaves of Japanese indigo using the instructions from Wild Colours. I stripped the leaves off the stems, washed them briefly, packed them in a pot and filled it with rainwater.

I then left it on my hot plate on low heat, switched on for 15 minutes every 2. hour. This kept the temperature around 35 – 45C, and I left it for 36 hours.

Then, I added sodium carbonate to raise the pH to about 9, and started pouring the liquid back and forth between two buckets. The reddish brown foam is supposed to turn blue (because pouring oxidizes the precursor indican to indigo) but nothing happened. Nothing. The next day, I took out a small part of the liquid, added some sodium dithionite, and tried dipping a scrap of yarn. Again, nothing. So in the end, I tossed the entire experiment. I think the reason for this failure was the very late harvest of my last Japanese indigo. So I haven’t tried my dried leaves yet, but I hope they contain some indigo! I’ll return to the extraction method next year with plants harvested earlier in the season.

Amazing Dyeing Failures 2

The topic of my last post was failures in dyeing, and here’s more. First, my most serious and most annoying failure as a natural dyer.

3: Organic Indigo Failure

A while back, I experimented a bit with an indigo vat with fructose, but my results were not very convincing, in the sense that the amount of blue I got out of the vat was completely underwhelming given the amount of indigo that went in. Mona of Thread Gently on the Earth suggested trying another type of indigo vat that uses madder and bran. So, using what Mona wrote and what her source of the information, Aurora Silk wrote, I tried the madder/bran vat, since I’m still very interested in a natural fermentation vat for indigo.

In the beginning of May, I mixed 34 g of indigo, 17 g of ground madder, 17 g of wheat bran, and 116 g of sodium carbonate. I used at pot with a well-fitting lid, and filled with water so there wasn’t much air in the pot. We had a very warm early summer this year, so I just put the pot outside the house, where it was 27C during the day. But nothing happened. I had suspected that, since the pot would cool off during the night.

My next setup consisted of a simple electric hot plate for cooking. After a bit of experimentation, i figured out that on the lowest setting, and switching it on for 15 minutes out of every 2 hours with an electric timer plug, I could keep the vat around 37C. After a couple of weeks, though, I was forced to admit that nothing much was going on there.

So I started a bit of wild experimentation. Could it be lack of reducing power? I added fructose and more base, but that didn’t get the vat started. I then transferred part of the vat to a large jar, and tried warming it on a water bath. The jar was full and had a tightly closed lid, and that did improve things. The color didn’t shift to yellow-green, it was still blue with just the slightest green tinge (you can see it on the spoon, top left image above), but the jar vat developed the coppery film of a working indigo jar. I dyed small skeins, and they came out a lovely dusty blue.

Indigo dyeing with a madder/bran vat with a sprinkle of fructose along the way. The vat became slightly green-tinged (top left), but did develop the coppery film that shows it’s working (top right). Bottom, a small skein of yarn dyed dusty blue in the indigo jar.

So it’s sort of working – but not amazingly so. I can only dye very small skeins in this jar, but I did a lot of troubleshooting which may bring me closer to running a fermentation vat properly and over a long time. For now, I do consider it a failure, since I got so little blue out of my 34 g of indigo, but I’m clearly not done with this. Maybe one needs to set up a larger vat, using an amount of indigo that makes abandoning the vat unthinkable.

4: Common Broom Failure

I have tried – and failed – to grow dyer’s greenweed (Genista tinctoria) a couple of times. The seeds need cold stratification, which I have tried to give them, but they never sprouted. Dyer’s greenweed is supposed to grow wild in my part of Denmark, and I have searched for it, but not found it.  Then in June, the landscape was dotted with yellow: it was common (or Scotch) broom (Cytisus scoparius). This plant is considered invasive in many places, but not in Denmark, where it occurs naturally. But it has been spreading in a new way for the past 30 years, so picking it is definitely fine, just keep in mind that the seeds are poisonous.

I studied my old flora a bit, and since both dyer’s greenweed and common broom belong to the legumes (family Fabaceae), I convinced myself that common broom would be worth a try in the dye pot. At that time (June), the flowers were already past their prime, but i picked some branches at the roadside.

Common broom is spreading, adding splashes of yellow to the roadside.

The result was not impressive – good old failure beige once again:

Wool dyed with common broom – hello beige…

I would have called it a failure and left it at that if I hadn’t come across an entry on common broom in John & Margaret Cannon’s excellent book “Dye Plants and Dyeing” (I recently bought a second hand copy). This book tells you that the part of the plant used for dyeing is young branches, picked in April or early May, not the flowering stalks picked in June as I did. The young branches should produce shades of yellow-green with alum and green with copper. I might try this again next year.

“Dye Plants and Dyeing” also mentions some confusion in the dye literature between common broom and dyer’s greenweed, since the latter is sometimes referred to as dyer’s broom. Not surprisingly, Cannon & Cannon (in a book published in association with The Royal Botanic Gardens, Kew) recommend that the dyer relies on scientific nomenclature for dye plants. Actually the same conclusion is reached by Catharine Ellis in her run-in with “broom”.

5: Reindeer Lichen Failure

During my summer holiday, I gathered some lichen of the Cladonia family, I believe it’s reindeer lichen (Cladonia portentosa). In “Lichen Dyes: The New Source Book”, Casselman lists this lichen as a boiling water method lichen that should give a “leaf green” color. So into the dye pot it went, with a test skein of unmordanted wool, since lichen dyes are substantive. The result is not what I hoped. Beige, despite the fact that I used a large amount of lichen relative to yarn:

Reindeer lichen (Cladonia portentosa) and yarn dyed with the lichen.

6: Cold Dyeing Failure

Mommy is a witch. Check out my cauldron, a dye pot with mushrooms and wool.

At some point, I tried dyeing with old polypores, in the usual hot dyeing process, and that actually gave me a good yellowish brown. Recently, when cleaning up outside, a big hoard of old polypores surfaced. I don’t have enough space to store dyestuffs inside, so they were outside and were damp and looked like they would spoil.

I had a thousand other projects going, so I wasn’t really ready to dye with them – so I decided to try a very lazy experiment: cold dyeing (which I normally never do because it seems to me that it doesn’t really work). The experiment amounted to throwing the polypores into a bucket with rainwater that was just standing there, then put in a small, 12 g test skein of alum mordanted wool, and then letting it stand there for about 3 weeks. You have probably already guessed that it produced a smelly skein of beige wool, which I cannot even find now (I think I overdyed it with indigo). So all I have to show for this experiment is my 6-year old Dagmar’s drawing showing that “Mommy is a witch”. I am taking it as a compliment.

PS: Just as I wrote this, light samples of both the cold dye and hot dye with old polypores surfaced on my desk. None of them have the light-fastness achieved with fresh polypores in a hot dye bath.

Saxon Blue

Ever since I first read about Saxon blue, produced by reaction indigo with concentrated sulfuric acid, I’ve really wanted to try it.

The lawyer Johann Christian Barth is credited with inventing the Saxon blue reaction in 1743. He treated natural indigo with sulfuric acid, then known as “oil of vitriol”. According to de Keijzer, the dye was in use in England by 1748, and Jenny Balfour-Paul writes in her book “Indigo” that the dye “can be seen in some oriental carpets, most characteristically those made in Turkey during the second half of the nineteenth century, and also in late eighteenth century Kashmir shawls”. The dye was relatively popular, even though its light- and wash-fastness is not as good as that of indigo itself.

Balfour-Paul calls the color “bright turquoisy blue” while de Kaizer mentions “bluish-green” shades.

The story about this caught my interest because it seems to be a midway point between truly natural dyes, and the synthetic dyes that came after Perkin’s discovery of mauveine in 1856. If made from natural indigo, Saxon blue is not really a synthetic dye. But it’s not fully natural, either, and the process that it was used in clearly seems to fit better into what we think of as an industrial process.

The problem for trying this at home is that you need to use concentrated sulfuric acid in order to produce Saxon blue. This is not something you can just go out and buy, and there’s a good reason for that. It’s a quite dangerous acid that reacts with carbohydrates like bread in a way that makes it look like the bread is on fire.

But now, the perfect opportunity came up, the exam project for teaching chemistry that  I’m working on right now. So here’s my little experiment with Saxon blue. I tried this in a chemistry lab, inside a fume hood, wearing lab coat and safety goggles. DO NOT TRY THIS AT HOME!!

I mixed 0.5 g of indigo powder with 5 mL of concentrated sulfuric acid, and then heated it over a simmering water bath for about 10 minutes (left photo below).

Then I diluted the indigo into water, and put in alum mordanted wool. I heated the wool in the dye bath for about 40 minutes (right photo below). Even after diluting, the solution was very acidic (pH 1).

Dyeing in the chemistry lab.

This is how the skein of wool turned out after rinsing out the excess color (there was a lot). A very clear blue, that’s actually very similar to the shade of blue you would get with indigo used as a vat dye.

Saxon blue wool.

But the chemistry behind this blue is different from the usual indigo chemistry. The reaction between indigo and sulfuric acid produces a compound called indigo carmine (this is what is called Saxon blue). Indigo carmine is an acid dye, not a vat dye. That means that it will bond to aluminum that was attached to the wool during alum mordanting.

Notice the cotton thread tied around my Saxon blue wool skein below. It’s only slightly blue-tinged. Alum does not react well with cotton, so there were only very few sites on that thread where indigo carmine could bond.

Now compare with the blue on the pile of cotton in the back. It just happened that I used the very same cotton thread for tying around clothes that I shibori dyed with indigo using the usual method. Notice how parts of the thread in the back are quite dark blue. They were exposed to the indigo vat, and the color took well, because indigo can deposit directly on cotton (there are also white parts, but they were just not exposed).

Saxon blue does not dye cotton well at all – for that, you need an indigo vat.

It was fun to try dyeing with Saxon blue (indigo carmine), but I don’t really see myself repeating the experiment for the purpose of actually dyeing wool. The fact that the light-fastness is low and the process uses concentrated sulfuric acid means that the comparison with indigo itself does not fall out in Saxon blue’s favor.

But if you are wondering what Saxon blue is up to these days, check your candy wrapper. It shouldn’t be difficult at all to find yourself some candies containing FD&C Blue #2 in the US, and E132 in the EU. That’s indigo carmine, or Saxon blue. The stuff in food does not come from natural indigo, it’s synthetic.

If you have appetite for some more dyes, you can also look for natural red 4 (US) or E120 (EU). It may also be written as carmine. Around here, it’s known as cochineal. In this case, the coloring in food does actually come from the natural source. Some people find this disgusting, but having ground the lice so many times for dyeing, I actually find it quite unoffensive.

Fructose Indigo Vat


Quite a while ago, I knit this little pincushion, the physical evidence of my experiments with an organic indigo vat. It’s knit in Fenris 100% wool, 450 m/100 g.

The pattern is free, Peerie Pin Cushion by Ellen Kapusniak. You’re supposed to sew it together, but I, of course, grafted it closed.

I normally use a chemical vat with sodium dithionite as the reducing agent, which reliably works for me without crocking or anything of the sort. But it stinks, and I don’t like mixing the chemicals in the same house as my children.

Another problem I’ve experienced with this relatively harsh reducing agent is that the color doesn’t deepen with successive dips. This is a known problem with this type of vat. It is just as efficient at depositing indigo on your fiber as it is at stripping it back off.

And then, I was also inspired by my visit to the natural dyer Kenichi Utsuki at Aizenkobo to try the real thing myself. He holds nothing but contempt for indigo dyeing that, although it uses natural indigo, uses an artificial, chemical vat for the dyeing process. According to him, the complexity of the final result depends on the slow build-up of layer after layer of color – as does the light-fastness.

I tried using a fructose vat, using the ratio found in Maiwa’s instructions (there’s also instructions for the same type of vat here). Here, one uses the fructose as a reducing agent, since fructose is a reducing sugar. It’s not nearly as potent as the dithionite.

The instructions say 1 part indigo, 2 parts lime, 3 parts fructose. Or at least I thought I used their instructions – they say 20 g of indigo, but I decided that I would try with 5 g. That gave very little blue on my yarn, but lots of blue was left at the bottom of the vat. You can almost see how weak the color is here:


I was later advised by the knowledgeable dyers of Ravelry that the fructose vat doesn’t scale. You have to use at least 20 g of indigo, and that should give you a living vat that you can feed more fructose and base and keep using for months.

I tried scaling it up, but the results I got were not what I had imagined. Sure, I dyed yarn blue, but the amount of color I got out of the vat still just didn’t correlate with how much indigo I put in. There was still a lot of blue sludge at the bottom of my vat.

I would love to run this vat much longer and get a continuous process going, in order to transform more of the indigo at the bottom. The vat has to become a living thing, and you have to dip and redip and so on!

I want to try this type of vat again because it is much more people and eco-friendly, and it is much closer to traditional methods of indigo dyeing than the chemical vat is.