Red Madder

Madder is one of the most ancient dyes, and one that is described in pretty much any book on natural dyeing. But every book seems to give a slightly different method for obtaining the sought-after madder red. There’s only one thing to do – experiment!

A bunch of madder dyed skeins. They’re all dyed in slightly different ways, so the colors have turned out differently.

Madder was one of the first natural dyestuffs I tried just when I began learning about natural dyeing, many years ago. I followed Jenny Dean’s “Colours from Nature”, the first book I bought back then (now, of course, I have a largish library on natural dyeing).

Dean gives a dyeing method for larger pieces of madder root, not powdered root. She rinses the root in cold water, then boiling water, and then adds the water for the actual dye bath. I tried her method for my first attempts with madder, but only got a series of tan/coral shades. Sometimes slightly more pink, sometimes more towards orange.

After my first attempts, I was ready to just give up. Coral was not exactly my favorite color, and I didn’t make any further attempts with natural dyes. That was until I happened to talk to some dyers at iron age and viking markets. One of them told me, that she always got good reds with madder by using destilled water.

After that, I happened to find a copy of a classic Danish dye book from 1972, “Dyeing with Plants” by Ester Nielsen. Nielsen steeps madder for 24 hours, and mentions nothing about changing the water at any point. Also, she mentions nothing about the type of water. Over time, I arrived at a variant of Nielsen’s method, using rainwater instead of distilled water because rainwater is free. I leave the madder to steep overnight in my dyepot, add alum mordanted wool, heat slowly to 55 C, and then wrap the pot in a blanket and leave it until the next day. So, yarn and madder in the pot together, and no changing the water.

I’ve achieved many clear reds with that method, but sometimes, the color has turned out more orange than red. That’s the case with the yarn for this hat:

Brisingamen hat in madder dyed yarn.

I do like orange, but it’s red you’re after with madder. Also, I’ve become increasingly confused the more I’ve read about madder dyeing, and I am not the only one. As mentioned, Dean uses a hot extraction (a soak in water that is discarded) whereas others, for example Ecotone Threads use a cold extraction.

Madder contains many different dye compounds. According to “Handbook of Natural Colorants” by Berchtold & Mussak, more than 35 different anthraquinones have been detected in madder (anthraquinones are the type of molecules that alizarin, the important red in madder, also belongs to). The different dye compounds have slightly different colors, so the the point of (cold or hot) extraction would be to remove some of the yellow or brownish ones.

I decided to test, whether I could get rid of my orange reds by using an extraction method. For this test, I’ve used my usual 12-gram skeins of Fenris (100% wool) mordanted with 10% alum. In all the experiments, I used 12 grams of madder powder per skein, leaving the madder in the dyepot the entire time. A few writers say that the madder should be removed from the dyepot before fiber is added, but most agree to leave it in.

According to Liles’ “The Art and Craft of Natural Dyeing”, alizarin has a very low solubility in water, and that’s why the madder should stay in the pot. As alizarin in solution is taken up by the yarn, more will be released from the madder. In all cases, I dyed the yarn by heating yarn and madder to 55 degrees C keep it there for 1 hour, and then leave the yarn in the dyebath overnight.

In my little experiment, I tested the following, both with rainwater and tap water: steeping the madder overnight and dyeing in the same water, filtering out the madder and dyeing with it in new water, and finally pouring boiling water over the madder and then dyeing with it in new water.

Filtering a small amount of madder in an old fashioned coffee filter.

Results below:

1: Madder steeped overnight in rainwater, yarn dyed in the same water.

2: Madder steeped overnight in tap water, yarn dyed in the same water.

3: Madder steeped overnight in rainwater, filtered, run-off removed and yarn dyed in new rainwater.

4: Run-off from 3 (the liquid that ran through the filter).

5: Madder steeped overnight in tap water, filtered, run-off removed and yarn dyed in new tap water.

6: Run-off from 5 (the liquid that ran through the filter).

7: Poured boiling water over the madder, filtered immediately, yarn dyed in new rainwater.

8: Poured boiling water over the madder, filtered immediately, yarn dyed in new tap water.

9: Run-off from 7 (not repeated for 8, as it would be identical.

The madder dyed skeins – theme and variations.

Skein 1 is dyed with just one volume of rainwater, which is my usual method. Luckily, skein 1 is one of the good reds in my test. Skein 2 is the same method, but using tap water. Skein 1 is only a slightly bit redder than skein 2, so using rainwater instead of tap doesn’t seem to have the importance that I thought. I measure pH of both baths, and they were both neutral after steeping overnight.

Skein 3 and 5 are dyed with madder that was steeped overnight, and then filtered to remove the first volume of water. If it was true that steeping and removing the water would remove yellow and brown tones, then skein 1 and 3 (both dyed in rainwater) and skein 2 and 5 (both dyed in tap water) should be different, but they are not. My conclusion is, that cold extraction does not remove yellows and browns.

That conclusion also seems to be correct when you look at skein 4 (rainwater) and 6 (tap water), which are dyed with the run-off from 3 and 5. If the extraction removed yellows and browns, then skein 4 and 6 should have those colors, but they don’t. They are tan/coral, exactly the kinds of colors I normally get from second, third and later afterbaths. So this could mean that cold extraction just removes a small fraction of the overall color present in madder.

Finally, the hot extraction. Skein 7 (rain) and 8 (tap) are dyed in new volumes of water added to the madder after the hot extraction. They are weakly colored, and the shades are very similar to those of skein 4 and 6. So most of the color is just gone after the hot extraction, and has ended up in the run-off that was used to dye skein 9.

Skein 9 has a good, saturated red-orange color, which is not that surprising. Temperature is the only factor that more or less all authors agree on. The temperature mustn’t get too high, as that brings out orange or terracotta tones, exactly what I’m seeing here. If  the light fastness turns out to be good, then this is actually a very good method for dyeing orange.

It’s nice to observe that this little experiment fits with my very earliest observations with madder. Deans method gives skein 8, a pale tone that would definitely be disappointing if you are trying to dye red.

So, in summary, the conlusions of my little experiment are:

Reds obtained with rainwater and tap water are not very different, and rainwater gives a red that is only very slightly better than the red with tap water. This conclusion is for my tap water, and may be entirely different elsewhere.

Cold extraction is not efficient for removing yellows, and hot extraction removes almost all the color.

I usually keep the temperature around 55 degrees C, but I have never checked myself to see how sensitive the color is to temperature. And I haven’t even begun to look at pH and calcium. My next experiments will be on those factors.

Lichen Windfall

Lichen windfall is perfect for natural dyeing, since it does no harm to pick up the fallen ones, they will no longer grow. One of the most common and easy-to-recognize lichens in windfall is Ramalina fastigiata.

~

When walking outside on rainy, windy days, I very often find lots of lichens scattered on the ground under trees. Lichens that the wind has torn down from branches. Sometimes, on the day after a big storm, I’ve come home from walks with all my pockets plus random trash bags filled with windfall. Wonderful windfall with that amazing scent that only lichens have.

Collecting windfall does no harm, since these lichens are not able to continue growing anyway. It’s the best (some would say only) way to obtain lichens for dyeing. When I come home with such a treasure, I usually spread it out on a plastic tray to dry (to prevent mold).

Lichen windfall drying at home. It looks like a big piece of Evernia pruniastri on the left, Ramalina fastigiata on the right, and probably a Parmelia species on the bottom.

But before dyeing with lichen windfall, it’s necessary to sort the lichens and determine the species, since you will need to use the boiling water method (BWM) with some species, and the ammonia method with others:

Boiling water method – it is what it sounds like. Simmer the lichen in water and cool off. Add the yarn to the dye bath and heat it for an hour without boiling.

Ammonia method – the difficult one. Steep the lichen in 1% ammonia (originally, stale urine was used) for several weeks or months, opening and shaking the jar daily to aerate. The red liquid in the jar is the dye bath.

In both methods, no mordant is required, since lichen dyes are substantive (they bind directly to wool without the help of a mordant).

Lichens steeping in 1% ammonia.

In order to type lichens, I recently bought myself a copy of “Lichens, An Illustrated Guide to the British and Irish Species” by Frank S. Dobson. It contains a detailed introduction to lichens, and a detailed key with photos and descriptions.

With my copy of Dobson, I’m planning to take a closer look at the types of lichens that are commonly found in the windfall here in my corner of Denmark. That is, how to recognize them, how to dye with them, and which colors to expect.

I’m beginning with a very common type of lichen, which may very well be the easiest one to recognize: Ramalina fastigiata. Often, large tufts of this will fall, and they are completely covered in small outgrowths that look like tiny suction cups. The outgrowths are apothecia, the fruiting bodies of the lichen. They make spores for sexual reproduction. When the spores germinate in a new location, they meet with a new alga to become a new individual lichen. But the dyer doesn’t have to worry about all that, being able to recognize apothecia is the important part.

A piece of Ramalina fastigiata, completely covered in apothecia. Tufts like this can measure up to about 5 cm (2 inches).

Karen D. Casselman mentions the Ramalina species on the list of ammonia methods lichens in her book, “Lichen Dyes, The New Source Book”.

I’ve previously tested the ammonia method on Ramalina fastigiata and achieved a light rose color (pictures here).

But Casselman also mentions the and Ramalina species in her list of boiling water method lichens, so I decided to test that method on Ramalina fastigiata. I used equal amounts of wool yarn and lichen, and achieved no color at all (no pictures!). The conclusion: Ramalina fastigiata is strictly an ammonia method lichen.

Vindauga Baby

The design theme from my Vindauga Blanket just stayed in my brain after I knit the first one, demanding to be knit in more variations! And when that design theme met with my experiments in 2-dimensional gradients (or matrices), the result was the Vindauga Baby Blanket, which I’ve finally managed to publish the pattern for.

You can buy the Vindauga Baby Blanket pattern on Ravelry. I’ve also dyed a small number of kits, you can find them at my Etsy shop. The colorways are purple-blue (dyed with cochineal and indigo – sold out), red-blue (dyed with madder and indigo) and green-blue (dyed with weld, mugwort, and indigo).

From a set of 9 skeins of matrix-dyed yarn (on the left) to the Vindauga baby blanket.

I’ve now written the pattern, had it test knit, and corrected over and over again. It’s finished, and now published in Danish and English. I’ll be the first to admit that actually finishing a pattern is not my favorite part of the process from idea to pattern. But if I don’t pull myself together at some point, then my ideas end up as just that – ideas in my head.

But dyeing the matrix mini skeins is a lot of fun. I’ve worked with these 2-dimensional gradients for some time now, but it’s still difficult to get them just exactly right!

First, I dye gradients of red, pink, or red with madder, cochineal, weld, tansy, or mugwort. I make 3 skeins of each. Then, I overdye with an indigo gradient, giving each of the 3 identical skeins a different indigo overdye. This may not sound difficult, but both steps are hard to control.

When dyeing with cochineal and madder, I find that the first bath always gives a more intense color than the second one. But sometimes, the second and third give about the same. It’s also difficult to control the exact shade of blue with indigo dyeing. One factor is how long you dip skeins in indigo, another factor is the number of dips. But the amount of available indigo in the vat also changes over time. Even after making many sets of matrix dyed skeins, it’s still a challenge!

indigo overdye
Yellow, red, and white skeins soaking on the left. On the right, similar skeins in an indigo bath. The temperature is 52 degrees, pH is 9-10. Everything is under control!

See projects on Ravelry:

Mushroom Dyeing of 2015

allesvampefarver2

2015 is history, and it’s now 2016, but I think there’s just time to show you my mushroom dyeing of 2015, which brought a quite nice mushroom harvest.

Fall is my favorite time of year. Always has been. It’s the colors, the scents, and the long forest walks. We go to the same plantation in the northern part of Denmark every year, and this year was no exception. Part of the area has recently been turned into a test center for wind mills, but luckily, the windmills didn’t disturb the mushrooms! And they actually please the eye, the windmills, as they peek over the trees – especially when you consider their part in ensuring that Denmark will actually live up to its climate goal of 40% CO2 reduction in 2020.

windmills

My family already picked mushrooms before I was born, but always for eating, and always from a small, safe repertoire of about 5 species, with the main emphasis on the chanterelle, because it is very tasty and very easy to recognize.

We still hunt for edible mushrooms, and we are even training the next generation. See what an expert chanterelle hunter my 5-year old is:

dagmarkantareller

But these days I also hunt mushrooms for dyeing, and that makes it even more fun to walk in the forest – I always find something interesting! This is the yarn I’ve dyed with mushrooms this fall:

allesvampefarver

I’m really happy with this lot, and I’m thinking about a project where I could use all these colors together.

From right to left, they are dyed with common eartball (brown skeins, 900 g of mushrooms on 150 g of yarn), velvet pax (green-grey), Cortinarius semisanguineus (rose), some mixed Cortinarius ssp (tan).

I don’t know which mushroom the orange skein is dyed with. I didn’t take pictures of it, but I think it was a species of Cortinarius. Here’s the orange skein seen on a page of my big mushroom book with some species that it could possibly be, most of which are really poisonous. It’s hard to tell different types of Cortinarius apart, and some of them very poisonous, so always keep them apart from food mushrooms!

orangeslørhat

The light yellow skeins were dyed with common rustgill (Gymnopilus penetrans). It’s a very common mushroom, and after walking through an entire forest of them, I finally picked some. After trying it in the dyepot, I don’t think it’s a spectacular dye mushroom. There’s a number of ways to achieve this yellow color, and it’s not very abundant in this mushroom.

plettetflammehat

I also found a lot of sulphur tuft (Hypholoma fasciculare) which I find to be a mediocre dye mushroom, since it gives just another yellow, and not even a lot of it.

svovlhat

The last skein is best described as “off white”. I tried to dye it with amethyst deceiver although I sort of knew it wouldn’t work.

purpledeceiver

They look so pretty on the forest floor, but unfortunately, you’re best off just leaving them there. The purple color is indeed deceitful. It vanishes when you store the mushrooms for a couple of days, it even vanishes if it rains on them while they are still growing. This last fact tells you to give up right away. Predictably, even a large amount of mushrooms give no color on yarn, but I guess sometimes the true experimentalist has to verify the obvious.

Save

Save

Save

Save

Save

Save

Jars of Lichens

Lichen dyeing is a slow discipline – the slowness only surpassed by the pace that the lichens themselves grow at…

I started two jars of lichens late in February, one with Evernia prunastri (left) and one with Ramalina fastigiata – at least, I’m fairly sure that’s what it is (right).

lichens

It’s important to mention how I gathered these lichens: the Ramalina fastigiata is all windfall from a single tree that used to grow in the playground near our house. Every time I walked under it, I found at least one bit of fallen lichen, and often, I filled both pockets. But then, the other day, I walked by only to find that the tree had been cut down! Along with every other tree nearby!! I hope some city planners somewhere are hanging their heads in shame. That place is not fit for humans anymore. Or any other species for that matter.

Most of the Evernia prunastri is also windfall, but some was picked during trips to several different forest where it grows so thick that most trees are completely covered with it, and in that case, picking off small bits is OK.

Evernia prunastri, also known as oakmoss, ragged hoary lichen, and stag’s horn lichen, is a well known dye lichen, and is also a component of many perfumes (makes sense, its scent is wonderful, but that’s the case with all lichens I’ve met up close). I put 25 g of this in one jar.

Ramalina fastigiata is not specifically mentioned in the lichen chapter of “Vegetable Dyes” by Ethel M. Mairet, a remarkably useful book from 1916 that you can read for free at the Gutenberg project. Nor does “Lichen Dyes, The New Source Book” by Karen Diadick Casselman, but both books mention unspecified/other Ramalina species as sources of red/pink using the ammonia method (and Casselman also indicates that yellow can be obtained with boiling water method). I put 20 g of Ramalina fastigiata in a jar.

After adding lichen to a jar, it should be filled with 1% ammonia so it covers. I buy the ordinary kind at a supermarket. It is 8%, so I simply make a diltion to 1%.

And then comes the tedious part!

Let the lichens steep in ammonia for weeks and weeks, take the caps off every day to let in air, and shake the jars well and often to ensure aeration. Casselman warns again and again that the color will not develop properly without good aeration.

I was diligent in my vat-shaking until early April, at which point I decided to try out the dyes.

From each jar, I took the amount of liquid that is equivalent to 5 g of lichen. From the Ramalina jar, which had 2o g of lichen, that was 1/4 of the liquid or about 100 ml. From the Evernia jar that contained 25 g of lichen, 1/5 of the liquid.

I diluted them to cover the yarn and placed them in a double boiler system with glass jars inside a pot of water. I remember reading about this somewhere, but I don’t remember who the brilliant person is…

But it’s very clever for these small dye baths AND also very good because the pH is above 10 even after dilution, so you have to heat very gently to not damage the wool:

doubleboiler

I gently heated the pot for about an hour, then took out the skeins of wool instead of leaving them in the dye bath until next day as I usually do. I did it differently because I thought the high pH over so many hours would ruin the wool.

This first dyeing attempt gave a couple of skeins of medium pink shades that are quite pleasing, I think! The Evernia-dyed skein (on top) has a slightly browner tone of pink than the Ramalina-dyed one (bottom) which is truly baby pink

lichenwoolapril

After that, I let the jars continue until late June, but I’m afraid the vat-shaking was much less diligent!

But on June 21st, I decided to finish the experiment.

I filtered the rest of the liquid in each jar, then measured the pH, it was 10-11 (as expected). I split the dye liquid from each jar in two, left one of them as it was, and neutralized the other one. I used about 1 part 37% acetic acid to 5-8 parts dye. This is just what we happened to have in the house, HCl would work too. If you want to try this at home, wear goggles and lock children and pets in another room.

Then I used the same double boiler setup as first time, taking out the wool at high pH after an hour, and leaving the skeins in neutral jars until the next day. And the result:

lichenwooljune

From right to left, it’s:

1: The Evernia-dyed skein from April

2: The Ramalina-dyed ditto

3: Evernia high pH, June

4: Ramalina high pH, June

5: Evernia neutral pH, June

6: Ramalina neutral pH, June

So actually skeins 3 and 4 are just a repeat of 1 and 2 but a couple of months later. I’m really not sure why the color was better in April than in June. Because I stopped shaking the jars as much? Or does it influence the result that I used alun mordanted skeins in April but unmordanted wool in June? It shouldn’t, since lichen dyes are substantial, but one never knows.

The neutralized dye baths yielded more color, but the color is towards tan tones rather than a real pink. Nice colors, but I’ve gotten similar colors from avocado with less effort!

FACTS – LICHENS, AMMONIA METHOD

Mordant 10% alun on some skeins, none on the others (it’s what I had around)

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio 2:1 and similar ratios

Conclusion Lovely baby pink plus more saturated orange-pinks

Possible improvements I’d like to get more intense color with this method, and I imagine using more lichen could do the trick. But the shaking of the jars is probably just important to optimize!

All in all, I’m pleased with my first results using these types of lichens and the ammonia method. But I do think there is a lot of room for improvement. I’ll probably start some new jars soon!

Avocado, Meet Blender

Remember these jars?

fermentation

They had been fermenting for over a week, and the color of the liquid didn’t change over the last days, so I decided it was time to try them.

The front jar contains the pit and peel from 1 avocado and 1 Tsp salt, the other one the same with the addition of 1 Tsp ammonia. I combined the pit and peel in one dye bath because my earlier attempts didn’t yield different colors with them separated. And this time I blended the pit and peel, carefully and a bit at a time to not destroy the blender.

The much deeper red in the ammonia jar does translate into more color, a reddish brown, on the yarn (in front) than the jar without ammonia (in the back) which just gave the standard beige. Again beige.

avoskeins

No pink this time, maybe because I didn’t heat the avocado before fermentation?

FACTS – AVOCADO PEELS + PITS, BLENDED

Mordant 10% alun

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio 10 g yarn to one avocado

Conclusion Ammonia extracts more color

Possible improvements Boil before fermentation to get pink. Filter out blended avocado before dyeing

At this point, I think it’s fair to say that I have tried a lot of combinations with avocado fermentation of avocado pits, of the peels, and now blending them together and fermenting them with and without ammonia. I’ve achieved a range of colors from beige over pink into brown.

So I do think this concludes my experimentation with this for now. The only thing that remains to be seen is how light and wash fast this is over a longer time.

Dette er det – måske – sidste forsøg med avocado, for nu i hvert fald. Denne gang har jeg blendet skal og sten af avocado sammen og prøvet at fermentere dem i en uge med eller uden ammoniak. Sidstnævnte gav den kraftigste farve i glasset og også på ulden. Men ingen pink denne gang, kun beige og brun.

Save

Avocado Peels

My experiments in dyeing with avocado pits were quite successful if I do say so myself (although a couple of skeins needed a little boost of cochineal).

But what about the peels? They can also be used for dyeing, and since I remembered reading that they give a slightly different shade, I kept them separate. Other than that, the procedure was the same as for the pits (fermentation in slightly salty water for about a week).

And the result:

avocadopeels

The avocado peel skein is in the front, and the 3 avocado pit skeins from earlier are in the back. So in my hands, the peels and pits gave just about the same color, but less intense from the peels.

FACTS – AVOCADO PEELS

Mordant 10% alun

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio Didn’t measure – but I’m guessing 1:10 or even more

Conclusion The color is pretty, but faint

Possible improvements Combine peels and pits to get more color

So that’s what I’ll do next time – and “next time” is actually underway already:

fermentation

These jars are fermenting right now. The one in the front is pit and peel from 1 avocado and 1 Tsp salt. It started bubbling from the bottom after about 3 days, and an orange color is beginning to develop with fermentation. The other jar is the same with the addition of 1 Tsp ammonia. The color is obviously a much deeper red in the ammonia jar, which, by the way, doesn’t ferment. I suppose the ammonia is killing the bacteria that would have fermented.

Next, I’ll try dyeing with liquid from the two jars, to see if the deeper color with ammonia also means more color captured by the wool!

Jeg har afprøvet farvning med gærede avocado-skaller, som giver en fin rosa farve, der ikke er lige så kraftig som den fra stenene. Så de kan godt bare blandes sammen, og det er lige hvad jeg har gjort i de glas der gærer i vinduet.

Save

The Faintest Pink

Once your eye adapts to spotting lichens, there is one in particular that beckons to you from just about everywhere – bright yellow Xanthoria parietina, growing on stones, fences, and branches.

It’s even in my holiday snapshots from last year, taken at Dybbøl, where the Germans beat the Danish army back to the stone age in 1864. Xanthoria parietina is the yellow splotches on these big boulders my daughter is posing on:

dybboel

And here is a branch with the lichen up close:

xathoria

The color of the lichen can actually vary quite a bit. The Wikipedia entry says that the deep yellow color is caused by the pigment parietin, which has a biosynthesis that is light dependent because parietin is actually the lichen’s UV protection. I have indeed often seen intesting lichens growing in the shade, and stepped closer just to find that it was actually a green-grey version of Xanthoria parietina.

The yellow parietin reacts with KOH to give red, one of the standard test one can make when typing lichens. I don’t know the exact chemistry, but I am guessing the same should happen when you steep it in ammonia?

Parietin, Wikipedia informs us, is also found in the roots of curled dock (Rumex crispus, kruset skræppe in Danish). Jenny Dean lists the roots of curled dock, dock, and sorrel as sources of reddish browns, but I’m not sure if that has anything to do with its parietin content.

But back to Xanthoria parietina. Irish lichens (one of my favorite web sources on lichens) tells us that it is a very pollution-resistant lichen. It seems to be spreading, and is even considered invasive by some people, so this one is fine to gather whenever you find it.

I have kept a jar of Xanthoria parietina since November 15th last year. It contained 42 g of lichen in ammonia (I buy the ordinary one at a supermarket and dilute it to 1%).

I try to remember to shake my jars of lichens. The book I read on the topic, Karen Casselman’s “Lichen Dyes, The New Source Book” returns to the point several times: “Aeration is important”, “Vats ignored […] may not develop properly” and so on.

But in real life, of course, it’s hard to remember. It only takes moments to take the lid off, replace it, and shake the jar, but like flossing and taking vitamins, initial determination can quickly wear off. Some weeks I may have shaken this jar every day, but at least half of the time, it’s just been on its own.

The dyeing process, on the other hand, is easy. Just pour the liquid into the pot and dye the yarn in it over gentle heat. My 10 g test skein came out a faint, but pretty, pink:

xanthoriaskein

and this is actually the best color that I have achieved with Xanthoria parietina. I think it’s a pretty color, although you are actually supposed to turn it blue by exposing the wet skein to sunlight. I tried that with a similar skein, but the blue tone it turned into was so faint that it was white that just felt a bit blue… My guess is that the initial pink should be very strong in order to get a good blue – this is also based on the photos that mycopigments posted here.

I suspect that the shift to faint blue will eventually happen if the yarn is exposed to sun at all (photo-oxidation). Red2white shows a series of light tests here, and in addition to color loss, there is also a change towards blue. But faint and possibly also quite fugitive – good blue can only come from indigo!

In conclusion, the dye from Xanthoria parietina is fun to play with, but not lightfast. I still find myself planning out more experiments, so next time I pass a yellow branch, something will go into my pocket (for a lovely day of acetone extraction perhaps?)

FACTS – Xanthoria parietina

Mordant 10% alun*

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio 1:4

Conclusion The color is pretty, but faint. And it is not lightfast

Possible improvements More diligent vat-shaking – more efficient aeration should develop the dye better. And maybe ripping the lichen into smaller pieces will also help extraction? According to Casselman, lightfastness improves if the yarn is dried before the dye is rinsed out

*Alun mordanting should not be necessary when working with lichen dyes, as they are substantive = able to bond to animal fibers by themselves. But I just had some mordanted skeins on hand, and it doesn’t interfere, either.

Lav-arten Xanthoria parietina bør, efter extraction i ammoniak, give en pink farve som skifter til blå i direkte sol. Jeg har prøvet at få denne blå frem tidligere, uden held. Denne gang har jeg ladet garnet tørre uden sol og fået en svag fin lyserød farve.

Solving the Problem of Beige

My recent attempt at dyeing with fermented avocado pits was only partially successful – I got three nice pink-ish test skeins out of it (on the left, dry) but two skeins of sock yarn came out a drab beige (still in the pot, so wet, which makes the color look nicer than it is)

avocadopot

So I decided to tweak the color in the pink direction, but only a very little bit.

This could be a general strategy for all those beige skeins!! Beige twisted towards pink is a very attractive color to my eye, an old dusty rose, but beige is just that – beige. My least favorite color. The color that makes even beautiful people look plain. So plain-looking people should steer way clear of it. Not to mention old wrinkled people.

I made a dye bath with 1/4 g cochineal. My ordinary kitchen scale doesn’t go that low, so I weighed off 5 g, divided them roughly in 5, and then took a quarter of that pile. We are down to individual lice, here. I used that on 300 g of sock yarn, two that were already avocado dyed and one white:

avocochineal

The avocado/cochineal skeins are the two in the back, and the middle skein is the one that went into the same dye bath, so it got 1/3 of 1/4 g of cochineal. Not much at all! The two front skeins are two more fresh 100 g skeins of sock yarn that got each 1/8 g of cochineal.

I love all of these pinks, and what is even better is the light-fastness of cochineal. In many ways, the properties of cochineal seem closer to a chemical dye, but it’s all just from a small louse.

And here is one avocado pit/cochineal skein up close

avocado

FACTS – AVOCADO PITS + COCHINEAL

Mordant 10% alun

Water Tap (avocado pits) and rain (cochineal)

Yarn Sock yarn 75% wool, 25% polyamide 350m/100g

Yarn:Dyestuff ratio 1:1 for avocado pits, then 0.08:1 for cochineal

Conclusion The final color is lovely, and tweaking with cochineal could well be a general solution to the beige problem

Her er endelig standardløsningen på de evindelige beige nøgler naturfarvet garn! Jeg har overfarvet med en lille smule cochineal, og det giver en dejlig gammelrosa.

Save

Avocado Pits

I’ve experimented with this salvage dye in the past, but not with much luck. Now, having tried many more dyestuffs, I’m returning to it.

The idea that you can get good color out of something you would have otherwise just thrown out is appealing and worth pursuing, especially in winter, where dyestuffs are scarcer.

I’ve saved avocado pits and peels in the freezer over a good amount of time. Maybe from 20 fruits in total? I’m not sure, and I forgot to weigh them before I started. Anyway, what I did:

  • I chopped the pits with my big knife. I read somewhere to blend them to a powder, but I only have my good blender and I don’t want to destroy it
  • Heated the pits in a couple of liters of salt water (2 Tsp salt per liter)
  • Left them to ferment for about a week. It really did ferment – the smell was unmistakable and air was bubbling out. Then it started to mold very slightly and I decided it was time to dye with it

The reason for adding salt is that it should prevent the dyestuff from spoiling during the fermentation time.

I tried the dye bath with 10 g test skeins of supersoft. The first one was a quite dull beige, but the next two progressively darker and more pink in tone. It seems that more color came out of the pits with each round of heating (I’ve seen this before with other dyestuffs, that later rounds with the same color bath actually gave more intense color instead of weaker). I added some ammonia to the washing water of the third skein, and maybe that turned the color more pink.

avocadoskeins

After the 3 test skeins, I bravely threw in two 100-g skeins of sock yarn.

There was still a lot of color left in the pot, but not of the pink kind  – the two skeins came out more to the beige side, in between test skein 1 and 2 in hue. So I didn’t even let them dry, as I’m planning to immediately overdye them – more later on this – and also, more later on the avocado peels (fermenting right now).

avocadopot

FACTS – AVOCADO PITS

Mordant 10% alun

Water Tap

Yarn Supersoft 575 m/100 g. Sock yarn 75% wool, 25% polyamide 350m/100g

Yarn:Dyestuff ratio 1:20 at least for the test skeins. More like 1:1 or 1:2 for the sock yarn

Conclusion The pink shades that can be obtained are nice, but some skeins turned out a dull beige

Possible improvements Maybe I should have used rainwater? It is often said that it helps with red shades. I think that using a blender would have helped extract the color better

 Jeg har forsøgt farvning med gærede avocadosten, og de gav en dejlig gammelrosa-beige farve på nogle små nøgler. Da jeg smed en større mængde garn i blev det dog bare en kedelig beige…

Save