Easy Knitting

Last week, I brought my yarn and kits to a market, and took the chance to chat with lots of people.

~

Lots of people stopped by, some drifted by on their round of the entire market, others stopped to chat.

There were two things that most people told me. The first one: they really liked my colors, and didn’t need to be told that I only use natural dyes. And I completely agree! These colors basically shout that they are natural:

My color circle – blue of course from indigo, purple from cochineal and indigo overdyeing, reds from madder, yellows from tansy, greens from indigo + plants, and dusty greens from whole leaf Japanese indigo.

The second one: people seemed to like my designs, but thought they were complicated. And well, I sort of knew that. I use techniques like provisional cast ons, grafting and so on, because it gives better results. I insist that these results are better, but I do understand that many people find such techniques difficult, or think they are.

So here’s my resolution. I will write easier knitting patterns. I’m reworking my Vindauga Baby pattern, making a version that only uses standard knitting techniques. I’m going to keep the picot edge, that one is easy, and very decorative. My plan is to release the pattern again, this time with an easy and a challenging option.

Purple, easy Vindauga Baby blanket.

Finally, I’ve deployed my secret weapon. My Mom! She dug through all my yarn, and found this:

Fenris dyed with indigo (left), with indigo and cochineal (middle), and Norne dyed with whole leaf Japanese indigo (right).

To begin with, she has her hands on the blue-green skein of Norne (that sort of had my name on it). Her plan is simple, geometric garter lace, it’ll be interesting to follow the progress.

Dyeing with Dried Japanese Indigo Leaves

The easiest way to save Japanese indigo is to dry the leaves. This is also the only option, really, when you grow a small amount of plants.

~

In traditional Japanese dyeing with Japanese indigo, the harvested leaves were composted (fermented) in a very specific way, sprinkling the leaf mass with water and turning it over. The timing had to be just right, and Jenny Balfour-Paul writes in “Indigo, Egyptian Mummies to Blue Jeans” that the indigo farmers referred to the packing of the leaves as “putting the baby to bed”. Every time the leaf mass was turned over, sacrifices of rice wine were made to Aizen Shin, the god of indigo.

Composting Japanese indigo was serious business – a difficult and big undertaking. The composting process can only get going if the leaf mass is sufficiently large, on the order of 100’s of kilos (or several hundred pounds). The end result were composted leaves that contained a higher percentage of indigo than the fresh ones. This mass is known as sukumo.

People who only grow a few plants (like I do) have to find a different method. Having read about it on Deb McClintock’s page, I decided to dry my Japanese indigo leaves last year. And I did manage to do so after some trial and error.

The dry leaves look like this:

Dry leaves of Japanese indigo, 2016 harvest.

Some of the leaves look a bit blue, and that does make you think there’s indio. I’ve been wondering why drying the leaves would work (the must have been good reasons for the traditional sukumo method) and I’ve come up with the following story:

In living leaves there’s no indigo, only a precursor called indican. Here, the meaning of the word precursor is a molecule that can undergo some reaction(s) that produce indigo.

Indican production is thought to be a defense mechanism for the plant. In living leaves, the indican is primarily found in a compartment within the cell called the vacuole (shown by a Japanese team of researchers in this paper).

The plant cell also contains enzymes that are able to break down indican, producing indoxyl and sugar, but these enzymes are found in other compartments of the cell.

When you pick leaves and dry them, cell membranes will break because of the loss of water. So at some point, indican and enzymes from other parts of the cell will mix, and indoxyl is formed. When two molecules of indoxyl combine, blue indigo is formed.

I used Deb McClintock’s version of John Marshall’s method but I fiddled about quite a bit, finding my way to do it. The main change is that I didn’t discard the yellow dye, so I get a green-teal instead of blue.

Green-teal with dried leaves of Japanese indigo. From left to right, the skeins are 1st, 2nd and 3rd dip in a vat made from 50 g of dried leaves (3rd skein was naturally grey). The skein on the left was dipped 3 times in a vat made from 25 g of dried leaves. I’m knitting from the first skein already, the striped boy’s jacket in the background.

For my first attempt, I used 50 grams of dried leaves to dye 3 100-gram skeins of wool. The vat stopped working early on, so I added a bit of this, a bit of that. That lead to no recipe, but the result was completely fine.

My next attempt was made during an indigo workshop I taught a while ago, and I know it was hugely optimistic to bring such a difficult project. That vat only gave a slight hint of mint green, but at least we got a lot of brilliant blues from the ordinary indigo vats.

Afterwards, I started thinking that the vat may have gone wrong because the temperature was too low. This also makes sense when thinking about this failed experiment where I kept leaves lukewarm for a longish time.

High temperature during part of the vat preparation seems to be important, and that is a part of the method I ended up with for my third attempt:

First, I simmered 25 grams of dried leaves in water (enough to cover them) for 20-30 minutes. It wasn’t a rolling boil, but some bubbling going on.

To dye blue, the first water should be discarded and new water poured on the leaves. I did not do that, so I kept the yellows from the leaves.

I added 5 grams of sodium dithionite and about 1 tablespoon sodium carbonate. Check that pH is 9, and add more sodium carbonate if it isn’t.

Then, I simmered the vat for 15-20 minutes. It seems wrong to boil a vat after adding reducing agent and base, but in my attempt where I didn’t boil it at this step, it didn’t work.

I took the pot off the heat and added another 5 grams of sodium dithionite. I let it sit until the temperature was 40-50 C, then strained the leaves out. For my first attempt, I left the leaves in to get as much out of them as possible, but that is not a good idea. At this point, they are quite slimy and stick to the yarn.

When the temperature was 40-50 C, I put the pot on gentle heat to stay at that temperature. At this point, the vat is ready for use. I dipped a 100-gram skein of wool 3 times, and it turned a nice teal.

I’m impressed by the dye content of the leaves. 50 grams of dried leaves gave nice color to 300 grams of yarn, and 25 g gave a brighter color to 100 grams of yarn. My last vat was not exhausted, it had turned dark the next day because the indigo had been oxidized. I didn’t have more yarn on hand, but the vat could have given light shades on another skein.

Wool dyed teal with Japanese indigo, accompanied by fresh and partially dry leaves.

But I’ve saved the best for last: light fastness. I tested light fastness of the first skein from the 50-gram vat from July 1st to September 1st. The left side was covered and not exposed, right side was exposed to the light. I can’t really see any difference between them, and that means the light fastness rivals that of indigo blue. And that is quite impressive for a green-teal color!

Light test of Japanese indigo teal. Two months of sunlight did not affect the color.

PS: I’m growing Japanese indigo again this year. I harvested the first leaves on September 17. this year, and they are drying. They look even bluer than the ones from last year…

Læs dette indlæg på dansk

Green Variations

One of the great things about natural dyeing is that you can keep overdyeing until you get the color you want.

~

I recently dug out some green skeins of Norne that were not exactly what I had imagined, and had been sitting in the storage basket for a while. I decided to overdye them to get as many greens as possible. So I wound skeins for dyeing and kept the last part of the skein the way it was.

One skein (skein 1 in photo below) was a medium blue from indigo overdyed with a couple of afterbaths from pomegranate and weld. They gave a rather weak yellow, too weak to match the blue tone, resulting in a quite anemic green.

Another skein (skein 12) had the same problem. Again, a medium indigo blue, this time over dried mugwort dye. I didn’t know at the time I dyed this (as I do now) that dried mugwort only gives a rater weak beige.

Then there was a skein with the opposite problem (skein 5). It’s dyed with a strong (1:1) weld and overdyed with weak indigo, giving a green/Chartreuse that’s just too intense.

Finally, there’s a skein that was actually a good color (skein 9) but I just didn’t have any plans for it. I dyed it long ago with tansy and a madder afterbath to achieve a warm yellow. I wound all the skeins into smaller ones and overdyed them with indigo, weld, and walnut hulls.

Overdyeing and then some more overdyeing, to get as many greens as possible.

Skeins 6, 7, and 8 come from skein 5 and are just overdyed with stronger and stronger indigo, and there’s no surprises there. The strong yellow base ends up as a clear forest green when the indigo component becomes large enough.

Skeins 10 and 11 are yarn from skein 9 overdyed with a bit of indigo and a bit more. Here, skein 10 was a nice surprise, a wilted green, one of my favorite shades of green. I suppose I am really revealing myself as totally ignorant of color theory, but I did not know that this type of green contains such a large proportion of red.

I made a dye bath with 12 g of weld and dyed 25 g of yarn from skein 1 in it. That turned into skein 2 – not a surprise that the forest green emerges when you lift the level of yellow to match the blue in intensity.

Then I made a dye bath with 25 g of walnut hulls. 25 g of yarn from skein 12 turned into skein 13. Again, the ignorant dyer was surprised – turns out army green is based on brown. The afterbath turned yarn from skein 1 into skein 3, another army green.

Skein 4 is yarn from skein 1, overdyed with a rather intense indigo. Here, the weak yellow base gives a really nice teal. Skein 14 is yarn from skein 12 just overdyed with a bit more indigo than it already was.

Finally, there’s skein 15. The yarn comes from skein 12, and was first dyed in the weld afterbath. It didn’t change much, so I dyed it in the walnut hull bath, which had already been used twice. Again, not much change, so I dipped it in indigo. That still didn’t change much so I left it because I ran out of ideas.

Skein 16 and 17 are both dyed with stinging nettle, said to contain a green dye. In the middle of May, I picked a big dyepot full (and they have no problem stinging through thick garden gloves) and dyed two 25-gram skeins. First skein 16, then skein 17 in the afterbath, followed by modification with a bit of iron. None of the skeins 16 and 17 are green but they work really well along all the other greens. Here they all are, along with an indigo-dyed skein, wound in cakes and ready to knit:

All the green yarn cakes, ready to knit.

I am experimenting with knitting very short scraps of all these colors together, more about that another time. So far, it looks like this:

Norne cut in short scraps and knit – color changes by doubling both the new and the old yarn.

But the search for greens doesn’t stop here. In addition to stinging nettles, May is also full of landscapes covered by wild chervil and broom.

I tried dyeing with common broom last year, but picked the plant too late in the season and got very little color out of it. In their “Dye Plants and Dyeing”, Cannon & Cannon write that flowering stems of broom should be harvested in April or early May. I managed to pick them late in May, which is probably fine since the book is English and most of England is south of Denmark.

On alum mordanted Fenris (pure wool), common broom gives me the greenish-beige that Cannon & Cannon promise. They show an almost black with copper, so I tried modifying with copper water for a few minutes. I have a jar that contains the innards from an old wire in household ammonia, and I just added a bit of it. This gave a very pretty green, which is leaning towards brown.

Wild chervil (also picked in late May) gave the expected fragile yellow with a touch of green. To some eyes nothing special, and for sure, there are many ways to get such tones. But I do find it lovely, it just captures the freshness of spring and early summer. Modified with iron, the color darkens and completely looses the freshness.

Yellow and greens dyed with common broom and wild chervil. The large skein on top is dyed with wild chervil, the one below the same but modified with iron. The third skein is dyed with common broom, the fourth common broom and copper.

Hypogymnia Lichen Windfall

I return from many of my walks with pockets full of lichen windfall. One of the common finds under trees is two slightly different species of Hypogymnia, a good dye lichen.

~

Lichen windfall is perfect for dyeing, since it does no damage to just pick up the fallen lichens. I’m therefore writing a small series of posts on the different species of lichens typically found in windfall, and I’ve already written about Ramalina fastigiata.

This time, I’ll have a look at Hypogymnia physodes and Hypogymnia tubulosa, two common species that are closely related (that’s why part of the name is the same). Also, they do look alike – both are grey-green and foliose (flattened, leaf-like). Hypogymnia physodes, here seen covering a small branch, has flat lobes, sometimes with soredia on the outer part. Soredia is one of the way that lichens can reproduce, and break through the surface in lots of little dots, making the surface look grainy or powdery. In Hypogymnia species, the soredia are found on the bottom side, which folds up on the tips of the lobes, making the grainy lower surface visible:

Hypogymnia physodes covering a small branch. Detail on the right shows the lobe tips folded up, displaying the graininess because of the soredia.

Hypogymnia tubulosa looks a lot like Hypogymnia physodes, but has hollow lobes. In the right side of the image below, the hollowness is visible since I cut one of the lobes:

Hypogymnia tubulosa with a cut lobe on the right side.

Both species are very common, and grow in many places, including on trees, stones, and wooden surfaces. They like growing on acidic substrates, and Dobson’s “Lichens, An Illustrated Guide to the British and Irish Species” mentions that Hypogymnia physodes is among the species least sensitive to sulfur dioxide pollution. Hypogymnia tubulosa is a bit more sensitive.

The dye content sometimes differs a lot even for species that are otherwise very similar. So I decided to test if the two species give the same color.

I used unmordanted yarn, since lichen colors are substantive. I made one dyebath with 9 g of Hypogymnia tubulosa, and put a 12-gram skein of Fenris (pure wool) and a 5-gram skein of Bestla (merino-silk) in. Another dyebath was 15 g of Hypogymnia physodes, and two 12-gram Fenris skeins and one 5-gram Bestla skein went into that one. So half the weight of lichen compared to fiber in both cases. I modified one of the Fenris skeins in an iron afterbath.

Both lichens give the same color – a fine, dusty yellow, the completely expected shade from bwm lichens. So in conclusion, no reason to sort Hypogymnia physodes and tubulosa. The merino-silk takes the color a little less well than the pure wool, and an iron afterbath does significantly darken/sadden the color at turn it green.

Left: pure wool and merino-silk dyed with Hypogymnia tubulosa. Right: pure wool and merino-silk dyed with Hypogymnia physodes, further right a pure wool skein dyed with the latter, modified with iron.

Spring Cleaning

In the summer, when all the plants stand tall, I usually collect good bundles of tansy, yarrow, and other wild dye plants. And they have to go before the next harvest.

~

My dyestuff stores from last year contained big bundles of mugwort and tansy, a smaller amount of yarrow, a box full of dry velvet pax, and dry pomegranate shells (among other things).

Spring has shown itself from its worst side this year, but I’ve managed to get outside with my little stove on an extension cord, working to bring down the amount of stored dyestuffs.

First, velvet pax. I found quite a nice harvest of this mushroom last year, more than half of what i found was from driving through a small forest, spotting the mushrooms, and hitting the brake!

I had 190 g of dried mushrooms. On 100 g of wool, that gave a good green (middle skein in photo below) and the afterbath a green-beige (right). I could not capture the color in the photo, but I was pleasantly surprised how well the dried mushrooms retain the color potential, including the green tones. In conclusion, velvet pax is a very good dye mushroom, fresh or dry.

There’s a beige skein on the left in the photo below. That’s 100 g of yarn, dyed with enough dried mugwort to fill a large dye pot completely. I even gave it an iron afterbath. Thinking back, this is actually the second time i get dull beige from dry mugwort, and the conclusion is that it does not dry well. The fresh plant, on the other hand, gives a nice yellow-green.

From left: dried mugwort and iron, dried velvet pax, 1. and 2. bath.

Next up, pomegranate shells. I had saved a very modest amount of shells, from just two fruits, weighing 85 g dry. I followed Jenny Dean’s “Wild Colour” and put the shells in a plastic bag and pounded them with a hammer. To test the new (to me) dyestuff, I wound two 12-gram skeins of Fenris (100% wool) and a small 5-gram skein of Bestla (silk-merino).

The pomegranate shells gave nice yellows on wool and silk. I modified one of the wool skeins with iron, and that gave a darker, greener tone, that actually looks a lot like the color from velvet pax.

Next time people eat pomegranates around here, the shells will be saved. They give a nice color, and they are available during winter, where little else is there in terms of fresh colors.

Pomegranate shells on silk-merino (back) and wool (middle), and modified with iron (front).

Several large bundles of yarrow, tansy, and mugwort turned into the yellow-beige first dye for a new round of matrix dyed yarn for Baby Vindauga kits. The second yellow os weld, and the skeins are overdyed with indigo as usual to produce the 9 different blues and greens.

Matrix dyed wool in blue and green.

And once I got started, a matrix in purple and blue, using cochineal and indigo, also appeared.

Matrix dyed wool in purple and blue.

The matrix skeins turned into contrast colors for new Baby Vindauga Kits, you can see them at my Etsy shop:

Purple-blue Baby Vindauga Kit.
Green-blue Baby Vindauga Kit.

A Herd of Hats

What’s the collective noun for hats? “Herd”? “Flock”? “Mob”? “Head”? Or, in my case, “parliament”, or even “pandemonium” may even soon be appropriate. I can’t seem to stop knitting them.

~

I’ve been working on two new designs for hats, a lacy one that leapt out at me from a Japanese pattern dictionary, and one in stranded knitting that came about by swatching. Yes, swatching.

Brisingamen is inspired by a Japanese pattern, and knit in two layers all over. The entire inside is knit in Bestla, a 35/65 mix of silk and merino, the entire outside is Norne, my 1-ply pure wool lace yarn. It took a bit of hard thinking to come up with a way to line both the hem and the rest of the hat – in the end, I went with two provisional cast ons. That may sound incredibly complicated, but it’s really not. And the result really is excellent. Since the gauge is small, the double fabric is thin, but very warm, even when it’s windy.

Here’s Dagmar on a snowy day a while ago, wearing the first prototype, knit in undyed yarn. It turned out too small for me, but fits her just perfectly.

Dagmar happily wearing the Brisingamen prototype.

For the final version, I only had to do small recalculations. A triple cable replaces the single line of twisted stitches between motifs, and the rib is longer. Here it is, almost done, in yarn dyed with 1:1 madder. I’ve dyed with madder on pure wool so many times, and still love how it takes the color. Silk merino takes the same dye in a slightly different, no less delicious, way. Perhaps it is the silk sheen that alters the look just slightly.

Brisingamen hat, the outer layer is pure wool, the inner silk-merino. Both dyed with madder root.

Folkvang is a tam that was inspired by Bohus patterns. Since I first read about Bohus patterns, I’ve wanted to make something using them as a starting point.

I started swatching to try patterns out. In the beginning, I wanted an arched pattern, so that’s how the swatch starts out (right side). But the arch didn’t behave, and I realized that you would have to work 3 colors in one row to make an arch that separates areas with two different background colors. I hate knitting 3 colors at a time, so I continued the swatch with rectangular shapes.

First, a white rectangle on a blue and green background. It’s OK, but the purl stitches on the long edges don’t add anything. Next, a blue rectangle on beige background. Purl stitches inside the rectangle add texture that makes the pattern more interesting. Now, I was on to something. I changed to white background, kept the dark indigo blue as the contrast color, and added in a bright green band of background color. I was getting close, and was finally happy with the pattern when I let the white background peek into the purled inside of the rectangle, and softened the bright green with a bit of beige.

The Folkvang swatch. White background with contrast colors blue (indigo), dark green (tansy and indigo), beige (velvet pax 2. bath), and bright green (reed flowers).

The vertical lines of blue purl stitches just beg to be lined up with purl stitches of a corrugated ribbing, so that’s what I did:

The Folkvang tam, flying off the needles.

The hem is lined with silk-merino. The outer part is knit in Fenris, which is excellent for color knitting, but really not that soft.

In order not to break up the corrugated ribbing when progressing from the hem to the main body of the hat, I used a new (I think?) way of closing the hem in color knitting.

In the photo below, you see the corrugated ribbing in front. The provisional cast on is undone, and the live stitches put on a needle, sitting behind the work. Now, holding the yarns appropriately for color knitting (blue is my dominant color, so it’s towards the left because I knit continental), I purl the purl stitch with blue, then knit together 3 white stitches with white, one from the front needle and two from the back. This leaves the purl columns unbroken, very satisfying to the obsessive knitter.

Closing the hem in color knitting.

Vindauga Baby

The design theme from my Vindauga Blanket just stayed in my brain after I knit the first one, demanding to be knit in more variations! And when that design theme met with my experiments in 2-dimensional gradients (or matrices), the result was the Vindauga Baby Blanket, which I’ve finally managed to publish the pattern for.

You can buy the Vindauga Baby Blanket pattern on Ravelry. I’ve also dyed a small number of kits, you can find them at my Etsy shop. The colorways are purple-blue (dyed with cochineal and indigo – sold out), red-blue (dyed with madder and indigo) and green-blue (dyed with weld, mugwort, and indigo).

From a set of 9 skeins of matrix-dyed yarn (on the left) to the Vindauga baby blanket.

I’ve now written the pattern, had it test knit, and corrected over and over again. It’s finished, and now published in Danish and English. I’ll be the first to admit that actually finishing a pattern is not my favorite part of the process from idea to pattern. But if I don’t pull myself together at some point, then my ideas end up as just that – ideas in my head.

But dyeing the matrix mini skeins is a lot of fun. I’ve worked with these 2-dimensional gradients for some time now, but it’s still difficult to get them just exactly right!

First, I dye gradients of red, pink, or red with madder, cochineal, weld, tansy, or mugwort. I make 3 skeins of each. Then, I overdye with an indigo gradient, giving each of the 3 identical skeins a different indigo overdye. This may not sound difficult, but both steps are hard to control.

When dyeing with cochineal and madder, I find that the first bath always gives a more intense color than the second one. But sometimes, the second and third give about the same. It’s also difficult to control the exact shade of blue with indigo dyeing. One factor is how long you dip skeins in indigo, another factor is the number of dips. But the amount of available indigo in the vat also changes over time. Even after making many sets of matrix dyed skeins, it’s still a challenge!

indigo overdye
Yellow, red, and white skeins soaking on the left. On the right, similar skeins in an indigo bath. The temperature is 52 degrees, pH is 9-10. Everything is under control!

See projects on Ravelry:

Late Summer Greens

This summer, I’ve dyed a nice pile of green wool using reed flowers and velvet pax – two dyestuffs that are a highlight of the dyer’s year. Reed flowers because they give such an electric green. You have to admit it’s a bit strange that these red flowers dye wool a wild green, but only if you get them into the dye pot absolutely fresh. If the flowers have opened or are not freshly picked, they will only give yellow. Velvet pax because its dusty greens are so lightfast. The two skeins in the back are dyed with velvet pax, the three in the front with reed flowers.

grøn green
Greens from reed flowers and velvet pax, the essence of late summer dyeing.

I’m becoming better at finding velvet pax. The first couple of years, I looked for it too late in the season. This year, I’ve found it growing several places, for example this archetypical plantation, where Dagmar is picking a big one. Just the kind of place that velvet pax likes to grow.

Dagmarplukker
Dagmar picking velvet pax (with the arm that’s not broken).

Velvet pax can be found in August, and this year, everything was early, so it was there at the beginning of August. And the mushrooms were huge – I found some that were 25 cm across.

sortfiltet
Characteristic brown tops of velvet pax, captured in a typical habitat.

Big, fat spiders are another joy of late summer. This one, which is possibly the fattest spider I’ve ever seen, lives outside our house. When I was sticking my camera right in its face, the neighbor’s big dogs started barking. Immediately, the spider lifted its front legs as if to attack. I chose to run away, so I only got a good shot from underneath the spider, where its pattern looks a bit like eyes. I think it’s a very light colored cross spider, since its body is pointy at the back. After reading that they can bite if provoked, I think my decision to flee was not a bad one.

edderkop
My pet spider.

Summer is also the time of year to test light-fastness. I tested a handful of colors on the windowsill from early July to mid August, and their light-fastness was quite different.

  1. Old polypores, the two top ones warm baths and the lower one a cold bath that brewed outside for some weeks. None of these yellow browns are very light-fast.
  2. Velvet pax, the color didn’t change. I’ve seen this light-fastness in previous test, so it really is that good!
  3. Orange Cortinarius mushrooms, I don’t know which species. Not that light-fast
  4. A matrix of madder and indigo, showing that saturated colors are much more light-fast than pastels
  5. Sorrel root, not very light-fast
  6. Birch leaves. Surprisingly light-fast
  7. Weld. Surprised by the fact that it’s less light-fast than number 6…
  8. Henna on alpaca. I’d say this is a medium light-fastness
  9. Calendula flowers. Surprisingly light-fast
Light testing summer 2016.

I’ve also dyed with tansy, which doesn’t give green, but “just” yellow on alum mordanted wool (no pictures of that). But when I admired the flowers, I suddenly wanted to check if they really do stick to Fibonacci numbers.

The Fibonacci series begins with two ones, and then the next numbers are found by adding the two previous ones:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.

The last time I thought about Fibonacci numbers were for calculating the numbers of my Vindauga blanket where rectangles obey the golden ratio, approximated by the ratio between neighboring numbers in the Fibonacci series, eg. 55/34 = 1.61.

Below is a close-up of a tansy flower. And as promised, the numbers of rows of tiny buds are Fibonacci numbers – 13 clockwise rows and 21 counter-clockwise.

DSC_2985
Tansy flower obeying Fibonacci’s sequence.

Green Matrix

Green is a difficult color to achieve with natural dyes. One might initially think that it was easy, given that green is the predominant color in nature. That’s not the case, since the green color of plants comes from chlorophyll, which doesn’t work as a natural dye (since it’s soluble in fat, not in water).

Since I had nice results with indigo overdyeing to get tones of purple, I repeated the process to get green. First, I mordanted my yarn with 10% alum. Then, I dyed it different shades of yellow:

  • a 1:1 bath of weld, gave a strong yellow
  • reused the bath above, gave a less strong yellow. Seen at the lower right in the picture above
  • a 2:1 bath of dry mugwort (so twice the amount of plant than wool) that I collected last summer. Gave a yellow-beige seen in the lower middle of the photo

greenmatrix

Then, I overdyed the different yellows with dark, medium, and light indigo. The 3 blue skeins in the left side of the photo are dyed with indigo on white yarn, just to show the shade of indigo. The next 3 green skeins are indigo on mugwort. The lighter indigo overdyes give dusty shades of green, while the darkest one gives an intense teal. Really worth remembering that such a dull beige can be turned into such nice shades of green.

The next 3 green skeins are indigo on less intense weld, while the last 3 skeins to the right are indigo on intense weld. Generally, indigo on weld gives clear, almost too clear shades of green. The indigo overdye on intense weld really gives an electric shade of green. The Robin Hood kind of green, which used to be known as Lincoln green.

Reed Flowers

lakereeds

Reed flowers are in season! I took the photo above on a beautiful August day at the lake. The sound of the wind through the reeds is positively mind-cleansing, which apparently I’m not the only one to think, judging by the number of YouTube videos of just that phenomenon. So now you too can enjoy it, even if you are in a skyscraper somewhere:

But I can promise you there was nothing mind-cleansing about my search for this dyestuff. They often grow a little bit out into the water, in places that are a bit hard to reach. I found a good patch of them growing in shallow water, I just had to cross a small forest. It looked fine, but it was actually a bottomless swamp, which I sank into to mid-thigh. Afterwards, I was a bit shocked, but otherwise fine! And I picked about 100 g of the silky soft, discreetly burgundy colored flowers: reedflowers

I rushed them to the dye pot – you have to use them fresh – and this is what I got on 20 g of supersoft in the first bath, 10 g in the second: first a lovely green, then a cold yellow:

reeddyedwool

FACTS – FRESH REED FLOWERS

Mordant 10% alun

Water Tap

Yarn Supersoft 575 m/100 g

Yarn:Dyestuff ratio 5:1 in first bath, 10:1 in second

Conclusion I love this green color, it’s beautiful and has a good light-fastness

Possible improvements The only one I can really think of is, that reeds should spontaneously grow in places that are easier to reach for the natural dyer

Last summer, I collected reed flowers while on holiday, and brought them home with me. I didn’t know that you have to put them fresh into the dye pot. The results were pleasing enough, although more towards yellow than green.

I have knit with the reed flower dyed wool from last year, and used the remaining scraps for light testing. These were on the windowsill for about a month from mid July to mid August. With this daylight calculator and a simple spreadsheet, I find that the samples for the 1st, 2nd, and 3rd bath of 2014 reed flowers got 572, 497, and 481 hours of daylight, respectively (since they spent the intervals 9/7-15/8, 10/7-11/8, and 11/7-11/8 on the windowsill). This is what they look like afterwards: the left side of each card has been covered, and the right side exposed:

reedflowerslighttest

A very good result indeed. You can tell that the paper has yellowed slightly from the exposure, but the yarn has only changed very slightly. The change is towards the yellow, so the green component seems to fade, but the color intensity is quite unchanged.